Final Report

Investigation of Potential Impacts to Groundwater at Wainscott Sand & Gravel/Sand Land Facility 585 Middle Line Highway, Noyack, N.Y.

Steve Bellone Suffolk County Executive

James L. Tomarken, M.D., M.P.H., M.B.A., M.S.W. Commissioner Suffolk County Department of Health Services

> Walter Dawydiak, P.E. Director Division of Environmental Quality

Office of Water Resources Doug Feldman, P.E., Office Chief Ronald Paulsen, Associate Hydrogeologist Andrew Rapiejko, Associate Hydrogeologist

June 29, 2018

Executive Summary

In March of 2015, the Suffolk County Legislature passed Resolution Number 245-2015 which directed the Suffolk County Department of Health Services (SCDHS) to determine the direction of groundwater flow in the vicinity of the Wainscott Sand & Gravel/Sand Land facility (Sand Land) and to install groundwater monitoring wells and test for the presence of a number of contaminants. This resolution was enacted due to concerns regarding potential impacts to groundwater quality from vegetative organic waste management (VOWM) activities being conducted at the Sand Land site. This final report describes the investigation that was undertaken in accord with this resolution, and discusses the results that were found.

The Sand Land site is located on the eastern end of Long Island, New York in the hamlet of Noyack, within the Township of Southampton. The 50 acre site is rectangular in shape and is located at 585 Middle Line Highway, east of Millstone Road. The majority of the properties in the vicinity of the site are residential in nature and many have their potable water supplied from an on-site private well. The Bridge golf course, an approximately 280 acre 18 hole golf course, is located north of the site. The Sand Land site is a sand mine that originally began operation in the early 1960s, and is presently authorized by the New York State Department of Environmental Conservation (NYSDEC), to mine sand and gravel from 31.5 acres of the 50-acre site.

The SCDHS initiated a groundwater investigation in May of 2015. However, site access issues limited the SCDHS to the installation and sampling of off-site monitoring wells only. In January of 2016, the SCDHS released an interim report entitled "*Investigation of Potential Impacts to Groundwater at Wainscott Sand & Gravel/Sand Land Facility, 585 Middle Line Highway, Noyack,* <u>N.Y.</u>". This report stated that the SCDHS should pursue permission to install profile wells on the Sand Land site, close to potential source areas, in order to obtain water quality data and collect water level measurements. The SCDHS requested permission to access the site from the property owner, but the request was denied. In November 2016, the SCDHS Commissioner signed a Warrant of Access and Inspection, which was confirmed by the New York State Supreme Court in August 2017. SCDHS personnel accessed the site on October 18th, 2017 to initiate the on-site investigation and completed the on-site field work on October 18th, 2017.

The SCDHS 2015 off-site investigation and 2017 on-site investigation included the installation of a total of twenty-one monitoring wells, collection of eighty-three groundwater samples, 4 surface water samples, 4 soil samples and 10 samples of vegetative material. In the on-site groundwater monitoring wells, iron and manganese were found to significantly exceed drinking water and groundwater standards in multiple wells. Manganese exceeded the standards by almost 100 times and iron by over 200 times. Other constituents that were also found above drinking water and groundwater standards in on-site monitoring wells were thallium, sodium, nitrate, ammonia and gross alpha. It should be noted that impacts to the groundwater quality were observed

despite the significant depth to the water table encountered at the site (137 feet to 154 feet below grade).

Manganese, iron, nitrate and toluene were observed in the off-site groundwater of downgradient wells at concentrations exceeding standards and/or guidance values. Due to the geologic complexities related to the presence of clays/silts and the depths at which the iron and manganese impacts were observed in the off-site monitoring wells, it is not possible to conclusively link these impacts to the Sand Land site. However, nitrate was detected in an offsite well at a depth and location that is considered consistent with impacts from an on-site area exhibiting elevated nitrate concentrations, and is therefore likely attributable to an on-site source.

Surface/ponded water samples were collected from four locations on the site. Elevated metals concentrations as well as low and trace concentrations of two pesticides were detected in some of the surface/ponded water samples collected on site. These pesticide detections could be attributable to run-off from vegetative organic material brought into the site. Also, low and trace concentrations of analytes commonly related to water impacted by septic waste (e.g., acetaminophen, caffeine and ibuprofen) were identified in the surface/ponded water, a potential source for these compounds is unknown.

The moraine deposits in which the subject site is located is documented as having complex hydrogeologic conditions¹. Clay and silt deposits exist throughout the area that contribute to significantly elevated local water table elevations that are inconsistent with regional water table elevations (e.g., perched water). Adding to this complexity is the proximity of the site to a regional groundwater divide. The SCDHS measured water level elevation in both on-site and off-site monitoring wells in order to establish the groundwater flow direction. The groundwater flow direction in the eastern section of the site was determined to be flowing in a westerly to slightly northwesterly direction, and groundwater on the western section of the site was found to flow westerly, with a slight southwesterly component. As groundwater moves offsite the flow characteristics will take on a more northwesterly flow direction. Additionally, data from wells installed on the site suggest the presence of downward vertical groundwater flow component, indicating this is a vital groundwater protection area. This also suggests that contaminants released on the site may flow into deeper portions of the aquifer.

Samples of the soil cuttings from the well drilling augers used to install the monitoring wells, and samples of vegetative material stored on the site indicated low concentrations of volatile organic compounds (VOCs) that did not exceed NYSDEC soil criteria. Toluene detected in an off-site monitoring well located on The Bridge golf course property, north of the site, is downgradient of toluene detected in soils and vegetative material on site. However, since toluene was not

¹Ground-Water Flow Paths and Traveltime to Three Small Embayments within the Peconic Estuary, Eastern Suffolk County, New <u>York</u>, 1999, United States Geological Survey, Water-Resources Investigations Report 98-4181.

detected in any groundwater samples collected on the site, it is not possible to conclusively attribute this off-site groundwater detection to the Sand Land site.

In March of 2018, the SCDHS identified thirty six properties potentially served with private wells that are located generally downgradient of the subject site (twenty one these homes were previously offered testing by the SCDHS in 2015). Water quality results obtained to date indicate that all of the private wells sampled in the current survey have met all drinking water standards, and have not indicated any VOWM related water quality impacts. Since the on-site area has been identified as a deep recharge area (vertical downward groundwater flow), there is the possibility that as contaminants move off-site into the areas with private wells, the contaminants are located deeper in the aquifer, below the well screens of the private wells. However, the complex lithology of the area (e.g., the presence of clay/silt layers) can have a localized impact on the vertical migration of water and /or contaminants (e.g., perched water) as it moves off of the site. The survey is still on-going at this time, and the water quality results will continue to be evaluated as they are completed.

Conclusions

The vegetative waste management activities on the Sand Land site have had significant adverse impacts to the groundwater. The analytical results from the groundwater samples indicate impacts of elevated metals concentrations (in particular manganese and iron) and other groundwater impacts that are consistent with results observed at other VOWM sites throughout Suffolk County¹, which have been attributed to the VOWM activities performed at these sites. Detrimental groundwater impacts were observed at the Sand Land site despite the significant depth to groundwater (137 to 154 feet below grade). Additionally, data from wells installed on the site suggest the presence of downward vertical groundwater flow component, indicating this is a vital groundwater protection area. This also suggests that contaminants released on the site may flow into deeper portions of the aquifer.

Recommendations

• The SCDHS should complete sampling of the private wells in the survey area to assess possible impacts to private drinking water wells to the west and northwest of the site. Based upon the groundwater information obtained in this investigation, and the results of the private well testing thus far, the extent of the private well survey area previously determined is appropriate.

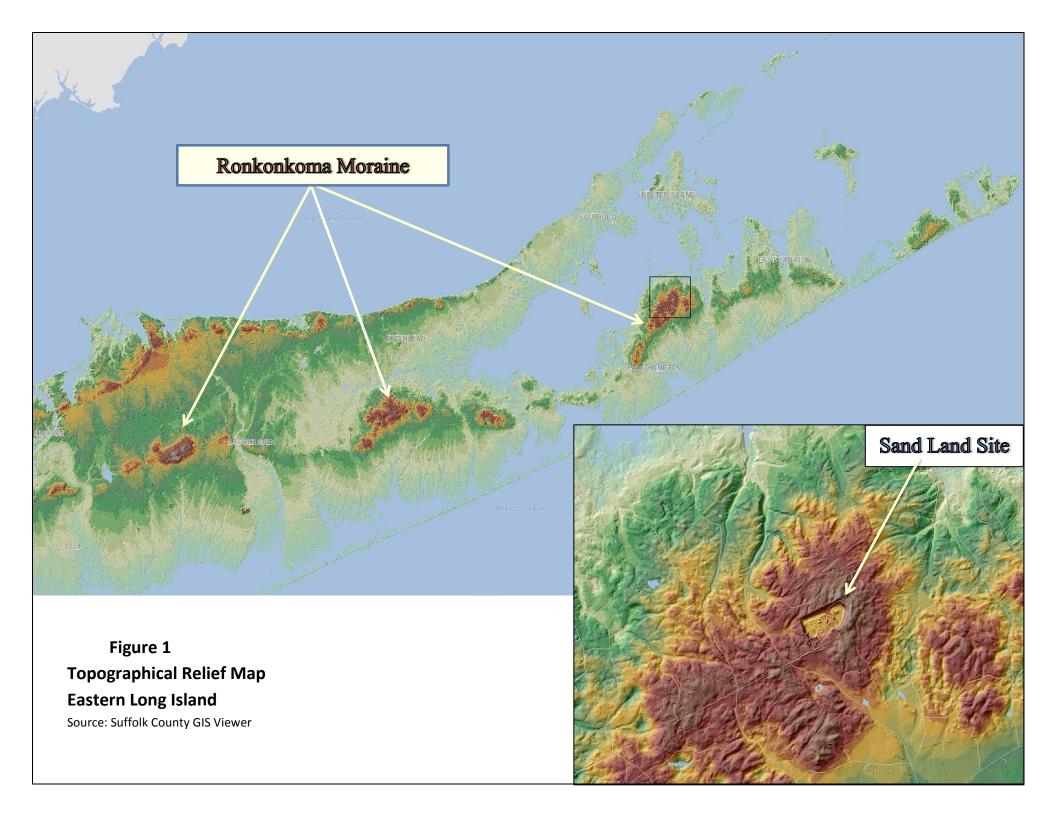
¹ <u>Horesblock Road Investigation, Yaphank, N.Y.</u>, July 2013, <u>Investigations of the Impacts to Groundwater Quality from</u> <u>Compost/Vegetative Organic Waste Management Facilities in Suffolk County</u>, January 22, 2016.

- Responsible state and local agencies (e.g., NYSDEC, Town of Southampton, etc.) should ensure that the activities conducted at the Sand Land facility are in compliance with all applicable codes, ordinances, permit requirements, etc., and that the activities at the site do not further impact groundwater quality.
- Should responsible regulatory agencies determine that VOWM activities are allowed to
 occur at this site, there should be requirements to ensure that mechanisms are in place to
 prevent operating practices from further detrimentally impacting groundwater and surface
 water quality. New York State Environmental Conservation Law section 15-0517 became
 effective on January 1, 2018 and requires groundwater testing and impermeable liners for
 land clearing debris and composting facilities; NYSDEC is in the process of establishing
 regulations. Since significant groundwater impacts have been identified, the requirements
 of the new law should be implemented as early as practicable.
- The NYSDEC should continue to inspect the facility to ensure that all materials being brought to the site are free of contamination.

Introduction

Investigations by the Suffolk County Department of Health Services (SCDHS) Office of Water Resources have shown that vegetative organic waste management (VOWM) activities can detrimentally impact groundwater quality.¹ Due to concerns that were raised regarding potential impacts to groundwater quality from VOWM activities conducted at the Wainscott Sand & Gravel/Sand Land facility (hereafter referred to as "Sand Land"), the Suffolk County Legislature passed Resolution Number 245-2015 (Appendix A) in March of 2015, directing the SCDHS to determine the direction of groundwater flow in the vicinity of the Sand Land site, and to install monitoring wells to test for the presence of various contaminants, including metals, inorganic compounds, volatile and semi-volatile organic compounds, radionuclides, and any other contaminants associated with composting facilities. In January of 2016, the SCDHS released an interim report entitled "*Investigation of Potential Impacts to Groundwater at Wainscott Sand & Gravel/Sand Land Facility, 585 Middle Line Highway, Noyack, N.Y.*". This final report describes the investigation that was undertaken in accord with this resolution, and discusses the results that were found.

Site Description


The site is located on the eastern end of Long Island, New York in the Hamlet of Noyack, within the Township of Southampton. The 50 acre site is rectangular in shape and is located at 585 Middle Line Highway, east of Millstone Road. The site is located approximately 1.5 miles south of Noyack Bay, and sits atop Long Island's Ronkonkoma Moraine, a line of high ridges extending from the vicinity of Westbury in western Long Island to Montauk Point (Figure 1). This moraine was created by a melting glacier's deposition of ice-transported sediment and rock. The majority of the properties in the vicinity of the site are residential in nature, with lot sizes ranging from approximately 2.5 to 5 acres. Many of the residential homes in the vicinity have their potable water supplied from an on-site private well. The Bridge golf course, an approximately 280 acre 18 hole golf course, is located north of the site.

Site Background

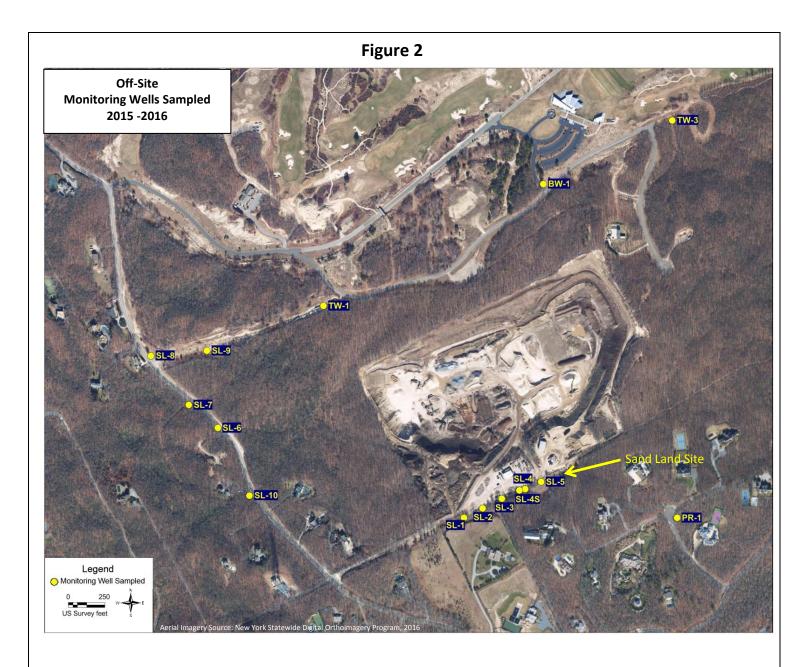
The Sand Land site is a sand mine currently owned and operated by the Sand Land Corporation. The mine originally began operation by Sand Land's predecessor in interest, Bridgehampton Sand & Gravel, Inc., in the early 1960s.² Sand Land Corporation has been operating since 1981 and is presently authorized pursuant to a Mined Land Reclamation Law (MLRL) permit, issued by the New York State Department of Environmental Conservation (NYSDEC), to mine sand and gravel from 31.5 acres of the 50-acre site, to a depth of 160 feet above mean sea level, which is 60 feet below the surface elevation at 220 feet.

¹ Horesblock Road Investigation, Yaphank, N.Y., July 2013, <u>Investigations of the Impacts to Groundwater Quality from</u> <u>Compost/Vegetative Organic Waste Management Facilities in Suffolk County</u>, January 22, 2016.

² Ruling of the Chief Administrative Law Judge on Threshold Procedural Issue, January 26, 2018, page 2.

SCDHS Off-Site Groundwater Investigation Work Conducted in 2015-2016

In accordance with Suffolk County Resolution Number 245-2015 described above, the Suffolk County Department of Health Services (SCDHS) initiated a groundwater investigation at the Sand Land site with the installation of groundwater monitoring wells in May of 2015. Since permission to access the site was not granted by the property owner, the monitoring well locations were restricted to off-site locations. The SCDHS installed and sampled a total of twelve monitoring wells located to the south and west of the site. All monitoring wells were installed using hollow stem augers and consisted of 2 inch diameter schedule 80 PVC pipe together with five foot well screens. Wells were installed to depths ranging from 175 feet to 255 feet from grade. Eleven of the twelve SCDHS monitoring wells were sampled at multiple levels and are referred to as "temporary profile wells". Each of the temporary profile wells were initially sampled at the deepest level and then pulled up ten feet and sampled again. This process was repeated until the top of the water table was reached. This procedure resulted in the collection of two to seven samples in each well, producing in an analytical profile of the groundwater from the top of the water table down to the depth at which the well was drilled. In addition to the profile wells, permission was obtained from The Bridge golf course located to the north of the Sand Land site to sample three existing monitoring wells located on their property. Figure 2 shows the locations of the off-site monitoring wells sampled. One SCDHS well (SL-4) and the three wells located on The Bridge golf course (TW-1, TW-3 and BW-1) were sampled at one interval only (Table 1). The monitoring well sampling began on June 10, 2015 and was completed on December 8, 2015.


2015-2016 Direction of Groundwater Flow Determined from Off-Site Wells

The first six monitoring wells to be installed and sampled (SL-1, SL-2, SL-3, SL-4, SL-5) were located on Middle Line Highway, south of the site. After the collection of the water samples, water table elevations were determined in five of the wells (SL-1, SL-2, SL-3, SL-4S, SL-5) in order to ascertain the direction of groundwater flow. Information reviewed from the United States Geological Survey's (USGS) 2010 regional water table elevations indicated a southerly groundwater flow direction from the site. However, the water table elevations measured in the five SCDHS installed wells south of the site indicated atypical readings, and generally did not appear to be consistent with a southerly groundwater flow direction. Information obtained from the USGS Report 98-4181¹ on water flow movement specific to this area indicated that the principal groundwater flow system appears to be generally to the northwest. The moraine deposits in which the subject site is located is documented as having complex hydrogeologic conditions². Low permeable deposits exist throughout the area that contribute to significantly elevated local water table elevations that are inconsistent with regional water table elevations, and result in groundwater that is "isolated from the principal flow system³". Adding to this complexity is the proximity of the site to a regional groundwater divide.

¹ <u>Ground-Water Flow Paths and Traveltime to Three Small Embayments within the Peconic Estuary, Eastern Suffolk County, New</u> <u>York</u>, 1999, United States Geological Survey, Water-Resources Investigations Report 98-4181.

²ibid, page 7.

³ ibid, page 16.

In order to gather additional information regarding the discrepancies encountered with respect to the water table elevations and groundwater flow direction, five additional monitoring wells (SL-6, SL-7, SL-8, SL-9, SL-10) were installed west and northwest of the site, primarily along Millstone Road. A sixth well (PR-1) was installed on Paumanok Road, south of the site. These wells, along with three wells located on The Bridge golf course (TW-1⁴, TW-3, BM-1) not installed by the SCDHS, were sampled. After sampling was completed, water level elevation measurements were collected on all twelve of the SCDHS installed monitoring wells (Table 2). This was accomplished by surveying the wells using the NGVD 29 datum from a permanent Suffolk County monitoring well (S-58959) located south of the site on Millstone Road. The equipment used for surveying was a Topcon AT-G2 auto level with tripod, fiberglass leveling rods (in feet/10ths), and depth to water was recorded using a Solinst Model 101 water level meter (in feet/10ths). The AT-G2 auto level and leveling rods were used to determine the differences in height between monitoring wells.

⁴ Prior to sampling, a new dedicated submersible pump with associated wiring and tubing was installed by The Bridge golf course.

					_
		Depth to	# Profile	Top Interval	Bottom
Well	Well Location	Water	Intervals	Level	Interval Level
		(fbg)+	Sampled	(fbg)+	(fbg)+
SL-1	Off-site, s/o site along Middle Line Hwy	207.2'	4	210- 215'	240'-245'
SL-2	Off-site, s/o site along Middle Line Hwy	204.2'	4	210- 215'	240'-245'
SL-3	Off-site, s/o site along Middle Line Hwy	203.1′	4	210- 215'	240'-245'
SL-4	Off-site, s/o site along Middle Line Hwy	201.1	1	230'-235'	-
SL-4S	Off-site, s/o site along Middle Line Hwy	201.0'	2	200'-205'	210'-215'
SL-5	Off-site, s/o site along Middle Line Hwy	199.6'	6	200'-210'	250'-255'
SL-6	Off-site, w/o site along Millstone Rd.	164.2′	4	170'-175'	200'-205'
SL-7	Off-site, w/o site along Millstone Rd.	156.5′	5	160'-165'	200'-205'
SL-8	Off-site, w/o site along Millstone Rd.	113.9′	7	110'-115'	170'-175'
SL-9	Off-site, w/o site along Millstone Rd.	185.2′	4	190'-195'	220'-225'
SL-10	Off-site, w/o site along Millstone Rd.	178.7	3	180'-185'	200'-205'
TW-3*	Bridge Golf Course, n/o site	200'	1	239'-242'	-
BW-1*	Bridge Golf Course, n/o site	225.3′	1	216'-231'	-
TW-1*	Bridge Golf Course, n/w site	-	1	239'-242'	-
PR-1	Off-site, s/o site on Paumonak Rd.	208.9	2	210'-215'	220'-225'

Table 1Off-Site Monitoring Wells Sampled in 2015

* Wells TW-1, TW-3 and BW-1 were not installed by SCDHS

+ feet below grade

The leveling rods were placed on a defined measuring point (MP) which was the top of the well casings. The auto level was set up between two monitoring wells and used to record the difference in height between the two wells. This process was performed twice to ensure an accurate reading. After the heights were recorded, the auto level was then moved between the last monitoring well that was recorded and a new one. This process was continued until the heights of all the monitoring wells were recorded. When this process was completed for all the wells, the Solinst water level meter was used to determine the depth to groundwater (DTW) from the MP. The DTW was then subtracted from the MP and a groundwater elevation in feet above mean sea level (FAMSL) was calculated.

It should be noted that, as indicated in Table 2, well SL-8 exhibited an anomalous water table elevation measurement. Geophysical logs (natural gamma log) were collected with a 5MXA-1000, Matrix Geophysical Logger with 2PGA-1000 Gamma Probe (Appendix B), and for SL-8 indicate a unique profile with respect to the presence of low permeable deposits (zones or layers of silts and/or clays) and the height of the water table, when compared with other nearby wells. The geophysical logs for the other wells (Appendix B) located along Millstone Road (SL-6, SL-7 and SL-

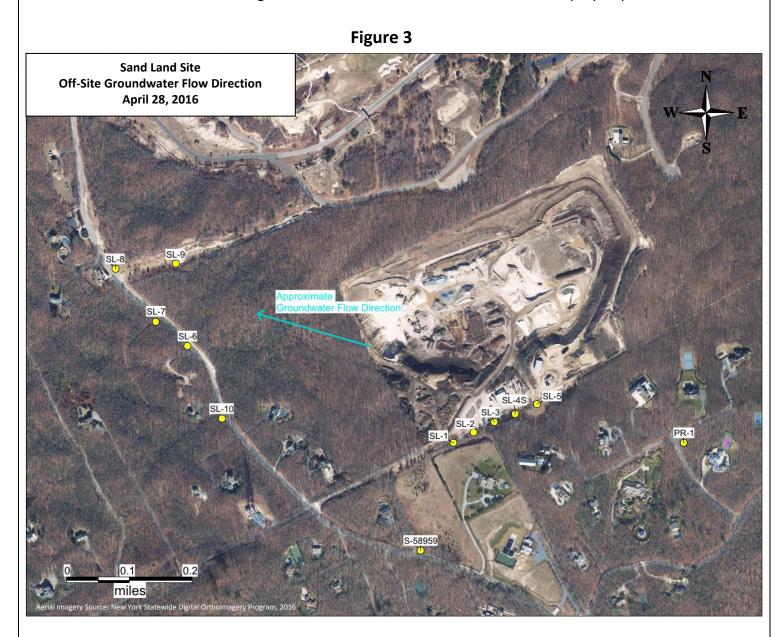
Table 2

2016 Elevation Information Off-site Wells

Well ID	Elevation of Measuring Point (FAMSL)*	Depth To Water (FBG)+ Collected on April 28, 2016	Groundwater Elevation (FAMSL)*	Longitude	Latitude
SL-1	223.25	207.96	15.29	-72.34162	40.97090
SL-2	220.78	204.87	15.91	-72.34116	40.97107
SL-3	218.77	203.71	15.06	-72.34068	40.97125
SL-4D	-	-	-	-72.34018	40.97141
SL-4S	217.40	201.23	16.17	-72.34020	40.97140
SL-5	215.51	200.17	15.34	-72.33970	40.97157
SL-6	175.99	163.71	12.28	-72.34776	40.97258
SL-7	169.45	156.41	13.04	-72.34849	40.97301
SL-8^	162.05	103.6	58.45	-72.34931	40.97390
SL-9	198.87	185.86	13.01	-72.34803	40.97402
SL-10	191.35	178.62	12.73	-72.34697	40.97131
PR-1	226.62	209.64	16.98	-72.33631	40.97090
S-58959	186.97	171.59	15.38	-72.34238	40.96902

* FAMSL – Feet Above Mean Sea Level

+ FBG – Feet Below Grade


^ Anomalous elevation, groundwater appears to be perched above the regional groundwater table. Not used in groundwater contouring.

- Not Collected

10) and SL-9 located just to the east of SL-8, all indicated that low permeable deposits were situated above the elevation of the water table. The observations made during drilling of these wells support this observation. However, SL-8 showed the most complex lithology encountered, with a low permeable deposit located both above and below the water table (also verified by observations made during the drilling of the well). This indicates the possibility that the groundwater located above the low permeable layer is isolated from the principal flow system (i.e., perched) and would not be considered part of the regional groundwater flow system. The existence of this condition in this area was discussed in the USGS Report 98-4181.

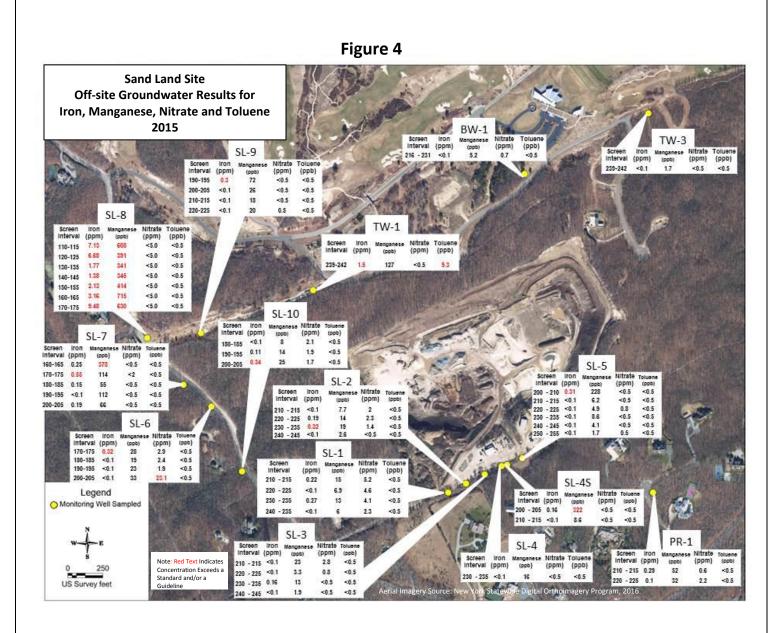
The information collected regarding the water table elevations was used to determine that the approximate groundwater flow direction just west of the site appears to be in a northwest direction (Figure 3). This groundwater flow direction is consistent with the principal flow direction for this area indicated in the USGS Report 98-4181. However, it should be noted that due to the large size of the subject parcel (50 acres), the known complex hydrogeologic conditions in the area, and the extreme distance from the potential source areas to the wells located on Millstone Road, the exclusive use of wells located around the periphery of the site provide only an off-site groundwater flow direction and may not be indicative of groundwater flow across the site. In

order to determine a more definitive groundwater flow direction across the site, it was determined that monitoring wells needed to be installed on the Sand Land property.

2015 Groundwater Water Quality Results of Off-Site Wells

A total of 49 water samples were collected in 2015 from the twelve wells located around the Sand Land site. All of the samples were analyzed by SCDHS Public and Environmental Health Laboratory (PEHL), which is certified by the New York State Department of Health's (NYSDOH) Environmental Approval Program and the United States Environmental Protection Agency's (USEPA) National Environmental Laboratory Program. Samples were analyzed for approximately 300 compounds using applicable USEPA or SCDHS methods, as appropriate. The analyte groups that were tested are indicated in Table 3.

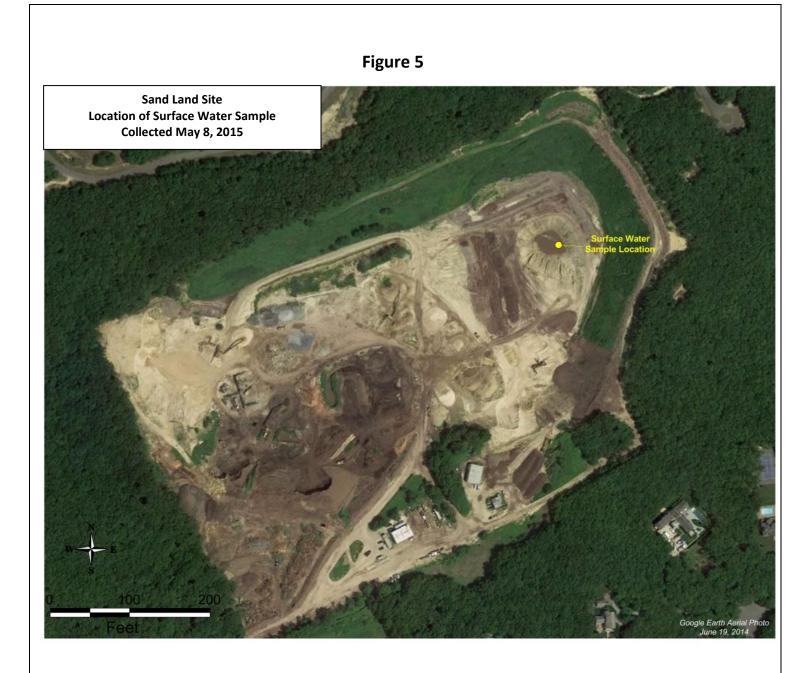
Table 3


Analysis Group	Analysis Group
Metals	Chlorinated Pesticides
Volatile Organic Compounds	Chlorinated Acids
Semi-Volatile Organic Compounds	1,4-Dioxane
Standard Inorganics	Dacthal
Hexavalent Chromium*	Herbicide Metabolites
Perchlorate*	Carbamate Pesticides
Radionuclides	MBAS (Detergents)*
Microextractables	

SCDHS PEHL Analyte Groups Run on 2015 Groundwater Samples

*Note: Analysis Group was not run on all samples

A list of individual parameters analyzed in the analysis groups is included in Appendix C, and a summary of the analytical results for detected parameters is included in Appendix D.


Iron, manganese, nitrate and toluene were observed at concentrations exceeding a standard. SL-2, SL-5, SL-6 and SL-10 exhibited iron concentrations ranging from 0.31 parts per million (ppm) to 0.34 ppm, which is slightly above the groundwater standard and drinking water standard (GWS/DWS) of 0.3 ppm. Iron concentrations were detected at more significant concentrations in SL-7 (0.55 ppm), TW-1 (1.5 ppm) and SL-8, where it was detected above the standards in each of the seven profile levels, ranging from 1.38 ppm to 9.48 ppm. Manganese concentrations exceeded the GWS/DWS of 300 parts per billion (ppb) in nine samples, including the top profile levels of SL-4S (322 ppb) and SL-7 (378 ppb). The manganese concentrations also exceed the standards in all seven profile levels of well SL-8, ranging from 341 ppb to 715 ppb. The deepest profile level of SL-6 (screened at 200 to 205 feet below grade) exhibited a nitrate concentration of 23.1 ppm, the only sample to exceed the GWS/DWS of 10 ppm. TW-1 had the only detection of toluene at a concentration of 9.3 ppb, which exceeds the drinking water standard of 5 ppb. It should be noted that this well (TW-1) was not a well the SCDHS installed, it is a preexisting well located on The Bridge golf course north of the Sand Land site which the SCDHS was given permission to sample. Figure 4 shows the off-site well locations sampled, and the concentrations of iron, manganese, nitrate and toluene reported at the varying well depths. Other detections/concentrations of note include: more metals were generally detected (e.g., arsenic, beryllium, lead, vanadium), and concentrations were higher (e.g., aluminum, lithium, titanium) in the profile levels of well SL-8 relative to the samples in the other wells; the deepest profile level of SL-8 (screened 170 to 175 feet below grade) had the only detection of gross alpha at 5.2 pCi/l and

also had detections of Bisphenol A, DEET and caffeine. Additionally, every well with the exception of SL-6 had at least one detection of chloroform. These concentrations ranged from 0.5 ppb to 5.4 ppb. It should be noted that chloroform was detected in the pump blank samples, and the detections observed in the monitoring wells is likely due to cross contamination.

Surface Water Sample Collected May 8th 2015

To help assess potential impacts to groundwater from the activities occurring at the Sand Land site, NYSDEC staff collected a surface water sample at the facility on May 8th, 2015. The sample was obtained from an area of ponded water situated in the north-east portion of the property (Figure 5). The sample was collected by NYSDEC personnel using a stainless steel bucket and was

relinquished to staff from SCDHS. The sample was decanted into the appropriate laboratory containers and transported to the SCDHS PEHL. The sample was analyzed by the PEHL for the analysis groups indicated in Table 4. The results indicate that 34 analytes were detected, including numerous metals, chlordane, gross alpha, gross beta, chloride, DEET, methyl sulfide and trace detections of 2-hydoxyatazine, dichlorvos, caffeine and acetaminophen. A list of individual parameters analyzed in the analysis groups is included in Appendix C, and a copy of the test results are included in Appendix E.

Table 4

Analysis Group	Analysis Group
Metals	Chlorinated Pesticides
Volatile Organic Compounds	Chlorinated Acids
Semi-Volatile Organic Compounds	1,4-Dioxane
Standard Inorganics	Dacthal
Radionuclides	Herbicide Metabolites
Carbamate Pesticides	Microextractables

SCDHS PEHL Analyte Groups Run on 2015 On-Site Surface Water Sample

2013-2016 Private Well Survey

As a part of a SCDHS initiative to identify and sample private wells in proximity to VOWM sites throughout Suffolk County, seven private wells were identified and sampled by SCDHS immediately south of the site beginning in 2013. The results indicated, that at the time of sampling, all the samples met drinking water standards with the exception of one well which exhibited a concentration of iron slightly above the drinking water standard of 0.3 ppm. The iron concentration detected in this sample is not normally considered harmful to public health, but is an aesthetic issue. SCDHS informed the property owner regarding the available iron treatment options, including the use of a polyphosphate feeder, or water softener. Once the determination was made that the localized off-site groundwater flow direction was to the northwest from the Sand Land site, twenty-one additional properties potentially served by private wells in the vicinity (west and northwest of the site) were then contacted with offers to have SCDHS conduct water quality testing. Seven homeowners responded and had their water tested. The results indicated that, at the time of sampling, all the parameters tested in the seven wells met drinking water standards.

January 29, 2016 Interim Report

In January of 2016, the SCDHS released an interim report entitled "<u>Investigation of Potential</u> <u>Impacts to Groundwater at Wainscott Sand & Gravel/Sand Land Facility, 585 Middle Line Highway,</u> <u>Noyack, N.Y.</u>". This report documented the work described above that was completed through mid-January of 2016. It should be noted that at the time of the release of the report, sample results were pending for wells SL-6, SL-7, SL-8 SL-9, SL-10 and TW-1, and these results were not included in the report. One of the 'Next Steps' outlined in this report was to "Pursue permission to install profile wells on the Sand Land site, as close to the potential source areas as practicable, in order to obtain water quality data and collect water level measurements." The water quality data from the surface water sample collected on the Sand Land site on May 8, 2015 indicating elevated concentrations of metals, and groundwater quality data received from the pending samples after the release of the report (and discussed in the *SCDHS Off-Site Groundwater Investigation Work Conducted in 2015-2016* section above) served to reinforce this recommendation. Well SL-8 exhibited degraded groundwater quality, consistent with impacts from activities related to other VOWM sites the SCDHS has investigated in Suffolk County. This well is located northwest of the subject site, and potentially hydraulically downgradient when considering the offsite groundwater flow direction west of the site (Figure 3). Known complex hydrogeological conditions in the vicinity of the Sand Land site were also identified in SL-8 (e.g., a potentially localized perched water table), making conclusions regarding the source of the degraded water quality observed in SL-8 difficult, warranting further on-site investigation closer to potential source areas (e.g., piles of vegetative organic waste).

2017 On-site Investigation

The groundwater information collected in the off-site monitoring wells in 2015 and 2016 was evaluated and it was determined that the magnitude and extent of groundwater contamination related to the site activities could not be definitively determined from the information gathered. This was due to a number of factors, including the complex hydrogeology in the area and, due to well siting limitations, the distance the offsite wells were located relative to the site and the potential contaminant sources. Results obtained had indicated the groundwater flow direction just west of the site was to the northwest, and water quality results collected from some of the profile wells west of the site (downgradient) had elevated contaminant concentrations (metals and nitrates), which were similar to those observed downgradient of other VOWM facilities investigated by the SCDHS. In order to verify the origin of these contaminants and determine the magnitude and extent of the groundwater impacts, it was determined that additional monitoring wells were needed on the Sand Land property, as close as possible to the piles of vegetative matter. Additionally, since a ponded water sample collected by the NYSDEC in 2015 contained various metals, pesticides, radiologicals and wastewater related compounds, collection of surface /ponded water samples from the site were also deemed necessary. Solid samples of the soil cuttings from the well drilling augers used to install the wells, and from the piles of vegetative material located nearest to the installed wells were also deemed necessary. This approach was generally consistent with other investigations the SCDHS had performed on VOWM sites across Suffolk County.

Site Access

The SCDHS requested permission to access the site from the property owner in order to perform the work outlined above, but this request was denied. In order for SCDHS personnel to gain access to the site to conduct the investigation, the SCDHS Commissioner, Dr. James Tomarken, signed a Warrant of Access and Inspection on November 2nd, 2016. On August 9, 2017 the New York State Supreme Court confirmed the Commissioner's Warrant of Access and Inspection.

SCHDS personnel accessed the site on October 4th, 2017 to initiate the on-site investigation and completed the on-site field work on October 18th, 2017.

2017 SCDHS Monitoring Wells

Nine temporary profile monitoring wells were installed as part of the on-site investigation (SLOS-1 through SLOS-9). The locations of these wells were determined based upon the review of historic and current aerial photographs to assess patterns of use across different areas of the 50 acre site, and also to ensure adequate geographical distribution for the determination of the groundwater flow direction across the site. Appendix F includes aerial photographs of the site taken from 1962 through 2016 depicting the locations of the 10 SCDHS monitoring wells installed for the on-site investigation. These photographs illustrate the different uses of the land in the vicinity of the wells over more than fifty years. The same procedures used for the installation and sampling of the temporary profile wells for the 2015-2016 off-site work, as described earlier, were followed for the nine temporary profile wells installed for the 2017 on-site work. In addition to the nine profile wells, one well (SLOS-10) was installed 15 feet deeper than the other wells, and was not profiled. A water level measurement was collected in this well to assist in obtaining information regarding the vertical (downward or upward) gradient of the water table (a water sample was also collected). Groundwater samples were also collected from two off-site wells (PR-1 and SL-3) located south of the site (these wells were installed as a part of the 2015-2016 work) to provide information on the ambient groundwater quality in the vicinity of the site. Information on the depths, locations, number of profile samples collected per well, etc. is contained in Table 5.

2017 Groundwater Water Quality Results of On-Site Wells

A total of 32 groundwater samples were collected from on-site wells, and two samples were collected from off-site wells. All of the samples, with the exception of four samples analyzed for perfluoroalkyl substances (PFASs) by New York State's Wadsworth Laboratory, were analyzed by the SCDHS PEHL. The analysis groups run by the PEHL are indicated in Table 6. Note that a list of individual parameters analyzed in each analysis group is included in Appendix C, and a summary of the analytical results for detected parameters is included in Appendix G.

The following is a summary of significant analytical results from the 10 wells the SCDHS installed on-site.

<u>Metals</u>

Monitoring wells SLOS-6, SLOS-7 and SLOS-9 exhibited the most degraded water quality with respect to metals concentrations. Manganese, thallium, iron and sodium exceeded drinking water standards and/or groundwater standards or guidance values in the following on-site monitoring wells:

- Manganese (SLOS-2, SLOS-6, SLOS-7, SLOS-9)
- Thallium (SLOS-7)

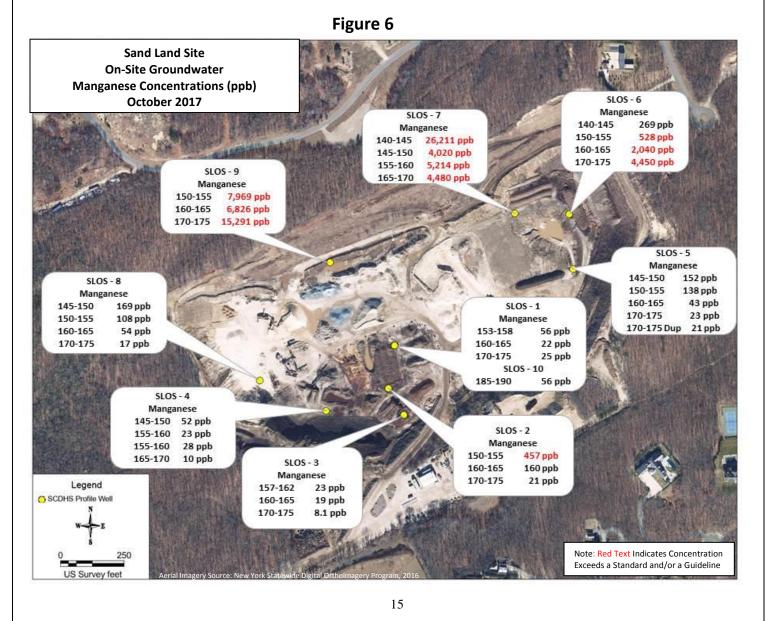
Table 5

Monitoring Wells Installed and/or Sampled by SCDHS

Well	Well Site Location Description	Depth to Water (fbg)+	# Profile Intervals Sampled	Top Interval Level (fbg)+	Bottom Interval Level (fbg)+			
SLOS-1*	On site, Mulch, Organic Vegetation	151.00'	3	153'-158'	170'-175'			
SLOS-2*	On site, Organic Vegetation	150.29'	3	150'-155'	170'-175'			
SLOS-3*	On site, Organic Vegetation	154.29'	3	157'-162'	170'-175'			
SLOS-4*	On site, near open pit and soil sorter	142.65'	3	145'-150'	165'-170'			
SLOS-5*	On-site, easterly well near active sand mining	142.85'	4	145'-150'	170'-175'			
SLOS-6*	On-site, easterly well near active sand mining	139.3'	4	140'-145'	170'-175'			
SLOS-7*	On-site, easterly well near active sand mining	149.62'	4	140'-145'	165'-170'			
SLOS-8*	On-site, western well near construction debris	137.2'	4	145'-150'	170'-175'			
SLOS-9*	On-site, center of facility, north access road	143.00'	3	150'-155'	170'-175'			
SLOS-10*	On-site, adjacent to SLOS-1	151.20'	1	185'-190'	185'-190'			
PR-1	Off-site, South of site on Paumanok Road	209.81'	1	210'-215'	210'-215'			
SL-3	Off-site, on Middle Line Highway	204.12'	1	210'-215'	210'-215'			
+ feet below grade * all onsite profile wells were removed after sampling was complete								

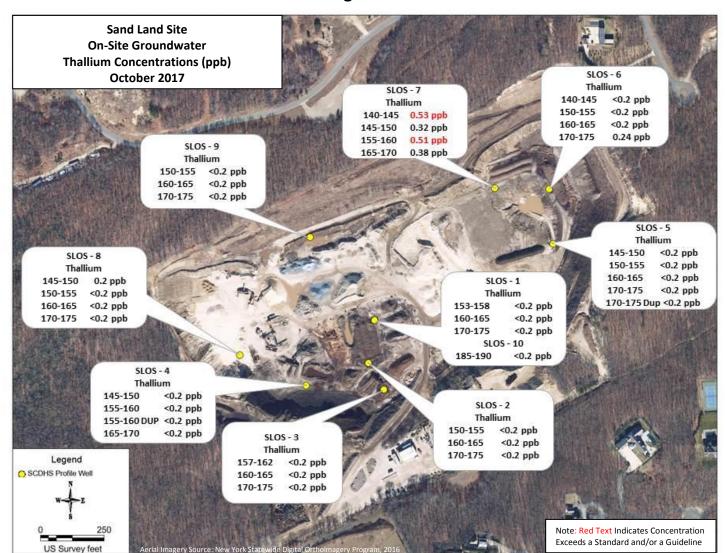
Table 6

SCDHS PEHL Analyte Groups Run on 2017 Groundwater Samples


Analysis Group	Analysis Group
Metals	Chlorinated Pesticides
Volatile Organic Compounds	1,4-Dioxane
Semi-Volatile Organic Compounds	Dacthal
Standard Inorganics	Herbicide Metabolites
Radionuclides	Carbamate Pesticides
Perfluoroalkyl Substances*	Microextractables

* Note: Analysis Group was not run on all samples. This analysis performed by New York State Wadsworth Laboratory.

- Iron (SLOS-1, SLOS-2, SLOS-3, SLOS-4, SLOS-5, SLOS-6, SLOS-7, SLOS-8, SLOS-9)
- Sodium (SLOS-2, SLOS-3, SLOS-4)


Manganese

Three of the four profile levels in well SLOS-6 had manganese concentrations ranging from 528 ppb to 4,450 ppb, exceeding the drinking water maximum contaminant level (MCL) and groundwater standard of 300 ppb. In well SLOS-7, all four profile levels exceeded standards for manganese. The top (water table) profile level of well SLOS-7, 140 – 145 feet below grade (fbg), had a manganese concentration of 26,211 ppb which is 87 times the drinking water and groundwater standard of 300 ppb. All three profile levels of well SLOS-9 exhibited manganese concentrations exceeding the GWS/DWS with concentrations ranging from 6,826 ppb to 15,291 ppb. SLOS-2 had a slight exceedance of the 300 ppb standard with a concentration of 457 ppb in the top profile level (150-155 fbg). Figure 6 depicts the well locations and associated manganese concentrations at the varying well depths.

Thallium

Thallium was detected in all four profile levels of well SLOS-7, with concentrations in two of the four levels, 104-145 fbg (0.53 ppb) and 155-160 fbg (0.51 ppb), slightly exceeding the NYSDEC TOGs 1.1.1 Guidance values (TGV) of 0.5 ppb. Thallium was also detected below TGV in the deepest profile level of well SLOS-6, 170-175 fbg (0.24 ppb) and the uppermost (water table) level of well SLOS-8, 145-150 fbg (0.2 ppb). Figure 7 depicts the well locations and associated thallium concentrations at the varying well depths.

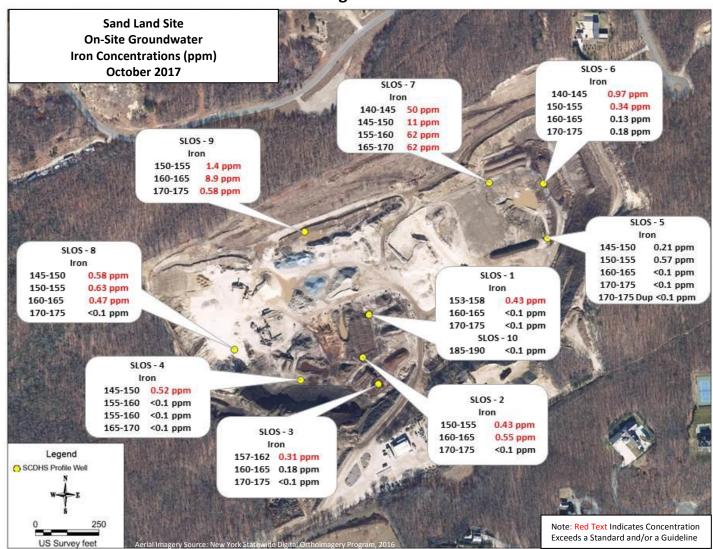


Figure 7

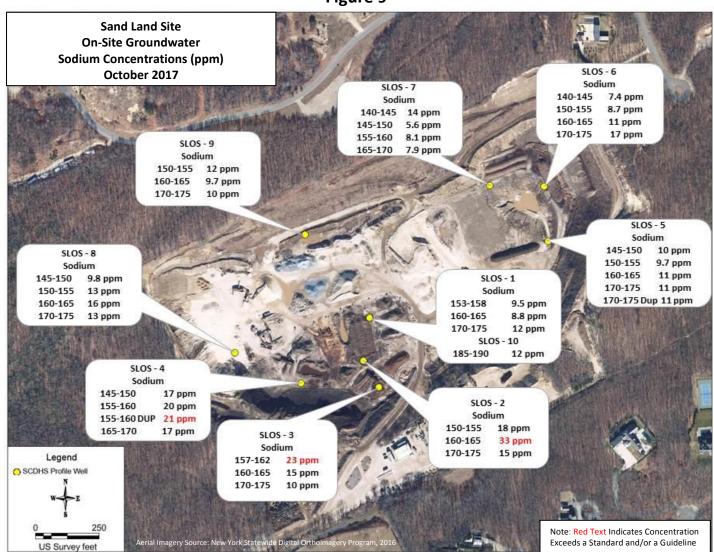
Iron

Iron was detected in concentrations exceeding the GW/DWS of 0.3 ppm in nine of the ten wells sampled on-site. SLOS-10, the deep well (screened 185 – 190 fbg) which was not profiled, had no detection of iron. Six wells, SLOS-1, SLOS-2, SLOS-3, SLOS-4, SLOS-5, SLOS-8, had iron

concentrations in one or more profile levels ranging from 0.31 ppm to 0.63 ppm. The three wells located along the northern portion of the site, SLOS-6, SLOS-7 and SLOS-9, generally had more significant iron concentrations, ranging from 0.34 ppm to 62 ppm. The highest iron concentrations were observed in the four profile levels of well SLOS-7: 140-145 fbg (50 ppm), 145-150 (11 ppm), 155-160 fbg (62 ppm) and 165-170 fbg (62 ppm). Figure 8 depicts the well locations and associated iron concentrations at the varying well depths.

Figure 8

Sodium


The sodium concentration exceeded the groundwater standard and TGV of 20 ppm in one profile level in three wells. SLOS-2, SLOS-3 and SLOS-4 exhibited concentrations of 33 ppm, 23 ppm and

21 ppm respectively. These wells are the most southerly located of the on-site wells. Figure 9 depicts the well locations and associated sodium concentrations at the varying well depths.

Inorganic Parameters

Two inorganic parameters, nitrate and ammonia, were detected at concentrations above their respective drinking water and/or groundwater standards in the following on-site monitoring wells:

- Ammonia (SLOS-6)
- Nitrate (SLOS-2, SLOS-3, SLOS-4)

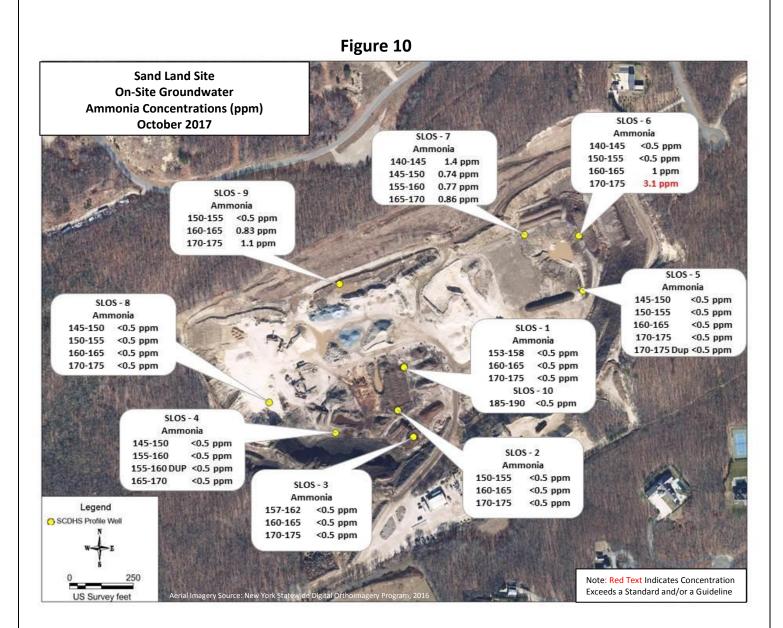
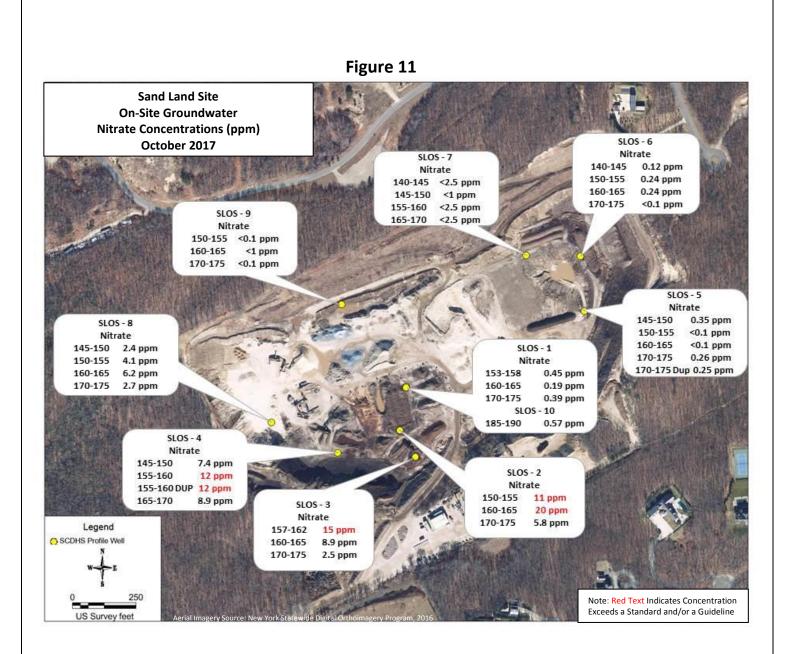


Figure 9

Ammonia

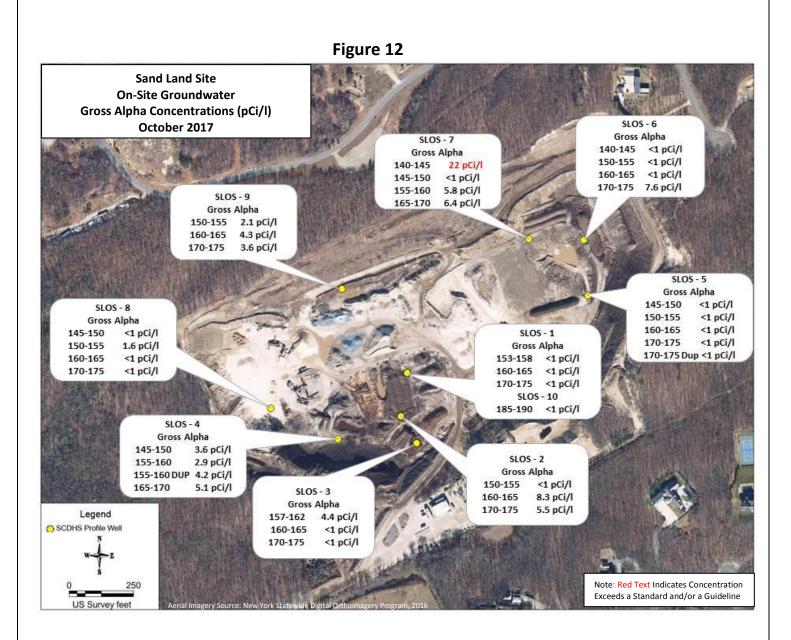

Ammonia was detected in the three wells located on the northern portion of the site, SLOS-6, SLOS-7 and SLOS-9. The ammonia concentration in the deepest profile level of SLOS-6 (170-175

fbg) was 3.1 ppm, the only one to exceed the 2 ppm groundwater standard. Ammonia was not detected in the other seven on-site wells. Figure 10 depicts the well locations and associated ammonia concentrations at the varying well depths.

Nitrate

The three most southerly on-site wells (SLOS-2, SLOS-3 and SLOS-4) exhibited nitrate concentrations in excess of the GW/DWS of 10 ppm. The top two profile levels of SLOS-2 (150-155 fbg and 160-165 fbg) had nitrate concentration of 11 ppm and 20 ppm, respectively. SLOS-3 had 15 ppm of nitrate in the top level (157-162 fbg). Figure 11 depicts the well locations and associated nitrate concentrations at the varying well depths.

Radionuclides


Gross alpha, gross beta and tritium were analyzed in all of the on-site groundwater samples collected. No samples exceeded the groundwater standard for gross beta or the drinking water guidance value for adjusted gross beta, there were no detections of tritium in any of the samples, and one sample exceeded the drinking water standard for gross alpha as follows:

• Gross Alpha (SLOS-7)

Gross Alpha

Gross alpha was detected in fourteen of the 32 on-site groundwater samples collected. Seven of the ten wells had at least one detection of gross alpha. Wells SLOS-1, SLOS-5 and SLOS-10 had no

detections. The upper profile level (140-145 fbg) of well SLOS-7 had a concentration of 22 pCi/l, which exceeds the drinking water standard of 15 pCi/l. Figure 12 depicts the well locations and associated gross alpha concentrations at the varying well depths.

Other Notable Results

Other notable analytes were detected, however their concentrations either did not exceed an established drinking water or groundwater standard/guideline, or no standard/guideline currently has been established. This includes metals such as aluminum (up to 630 ppb), barium (up to 525 ppb), strontium (up to 481 ppb), and potassium (up to 161 ppm). The pesticide dichlorvos was detected at low or trace concentrations in five wells, and breakdown products of the pesticides

metolachlor (metolachlor metabolite CGA-67125) or atrazine (didealkyatrazine) were detected at trace concentrations in five different wells. Acetaminophen was detected at trace concentrations in three of the four profile levels in SLOS-7. Equilin, a naturally occurring estrogen which is found in horses, was detected in SLOS-5 at two profile levels (160-165 fbg and 179-175 fbg) at 0.9 ppb, and bisphenol A was detected at trace concentrations in four different wells.

The uppermost profile levels (water table) of four wells (SLOS-1, SLOS-2, SLOS-3 and SLOS-7) were analyzed for perfluoroalkyl substances (PFASs). Four PFASs were detected: perfluorobutanesulonic acid (PFBS), perfluorohexanesulonic acide (PFHxS, perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA). Two wells (SLOS-2 and SLOS-3) had four PFASs detected, three PFASs were detected in one well (SLOS-7) and the fourth well (SLOS-2) had no PFAS detections. All detected PFASs exhibited concentrations below their applicable drinking water standard⁵ or health advisory level (HAL). PFOA is the only one of the PFASs detected that has a Health Advisory Level (HAL) set by the USEPA (70 parts per trillion (ppt)). Concentrations of PFOA ranged from 3.11 parts per trillion (ppt) to 8.5 ppt, which are below the HAL. All the other detected PFASs are regulated by New York State as Unspecified Organic Contaminants with a maximum contaminant level (MCL), or drinking water standard, of 50,000 ppt, and their concentrations ranged from 2.52 ppt to 7.34 ppt, well below the MCL.

2017 Groundwater Water Quality Results of Off-Site Wells

Two wells, SL-3 and PR-1, installed as a part of the 2015-2016 off-site investigation were resampled on October 23rd, 2017 Both wells had been installed as profile wells and sampled in 2015, and both remained at their uppermost profile level, 210' to 215' fbg. SL-3 is located on Middle Line Highway, directly across and south of the site, while PR-1 is located on Paumonak Road, approximately 700 feet southeast of the site. These wells were resampled in 2017, and considering a northwest groundwater flow direction across the site, their location indicates that their groundwater quality would not be impacted by site activities and serve as a reference.

<u>Metals</u>

Iron and sodium exceeded drinking water standards and/or groundwater standards or guidance values as follows:

- Iron (SL-3, PR-1)
- Sodium (PR-1)

⁵ There is currently no chemical-specific Federal or New York State drinking water standard for PFASs; however they are regulated as Unspecified Organic Contaminants by the New York State Department of Health (NYSDOH) at a maximum contaminant level (standard) of 50,000 parts per trillion (ppt).

Iron

Iron exceeded the GW/DWS of 0.3 ppm in both wells, with SL-3 reporting 0.77 ppm and PR-1 reporting 0.42 ppm.

Sodium

PR-1 exhibited a sodium concentration of 37 ppm, which is above the NYSDEC Part 703 Groundwater Standard of 20 ppm.

Other Notable Results

Low concentrations of chloroform (2.4 ppb) and 1,4-Dioxane (0.12 ppb) were detected in SL-3. Bisphenol A was detected at trace concentrations both wells. All these detections were at concentrations below the applicable GW/DWS.

2017 On-Site Surface/Ponded Water Quality Results

Six surface water/ponded water samples were collected at four different locations on the site. Samples were collected from locations SLSW-1 and SLSW-2 on October 4, 2017. Due to logistical issues, these two samples were brought to the laboratory for analysis more than 24 hours after collection, therefore these two sites were resampled on October 10, 2017⁶. Samples were also collected at sites SLSW-3 and SLSW-4 on October 10th. Samples were analyzed by the SCDHS PEHL for the analyte groups indicated in Table 7. Note that a list of individual parameters analyzed in each analysis group is included in Appendix C, and a summary of the analytical results for detected parameters is included in Appendix H.

Table 7

SCDHS PEHL Analyte Groups Run on 2017 Surface Water/Pond Samples

Analysis Group	Analysis Group
Metals	Chlorinated Pesticides
Volatile Organic Compounds	1,4-Dioxane
Semi-Volatile Organic Compounds	Dacthal
Standard Inorganics	Herbicide Metabolites
Radionuclides	Carbamate Pesticides
Microextractables	

The following is a summary of notable analytical results from the surface/ponded water samples collected on site. It should be noted that the NYSDEC has not established water quality standards

⁶ Results of detected parameters for samples SLSW-1 and SLSW-2 on both October 4th and October 10th, 2017 are include in Appendix H. Only the results from the October 10th sample event will be included in the discussion.

or guidelines for ponded water generated primarily from rainfall run-off (storm water), therefore NYSDEC Groundwater Effluent Limits (GEL) Part 703.6, that have been established for the analytes detected will be used for comparison purposes only. Aluminum, arsenic, lead and manganese were reported at concentrations above the NYSDEC GELs at the following sampling locations:

- Aluminum (SLSW-1, SLSW-2, SLSW-3, SLSW-4)
- Arsenic (SLSW-3)
- Lead (SLSW-1)
- Manganese (SLSW-3)

Figure 13 illustrates the locations of the samples and concentrations of the above referenced metals detected from the surface/ponded water on the site.

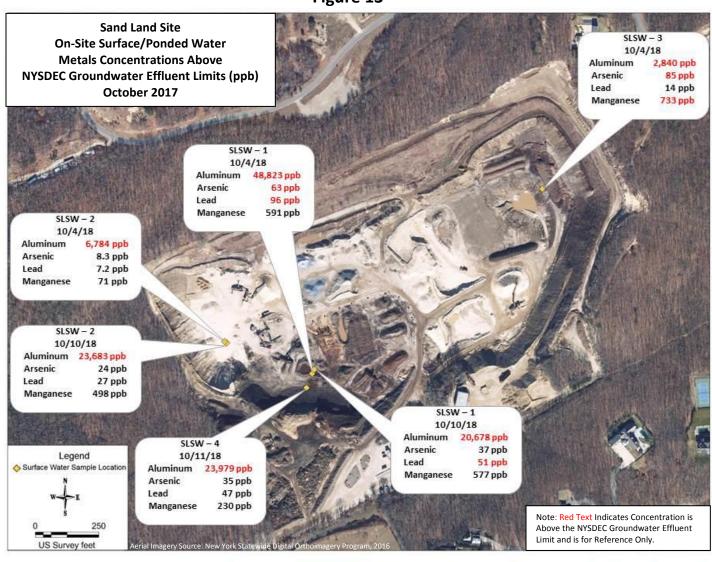


Figure 13

Aluminum

Aluminum concentrations were reported above the NYSDEC GEL of 2,000 ppb in all four samples. The samples collected from SLSW-1, SLSW-2 and SLSW-4 exhibited aluminum at concentrations above 20,000 ppb, while the sample collected at SLSW-3 had a concentration of 2,840 ppb.

Arsenic

Arsenic was detected in all four surface/ponded water samples ranging from 24 ppb to 85 ppb. The result in SLSW-3 of 85 ppb was the only sample to exhibit a concentration above the NYSDEC GEL of 50 ppb.

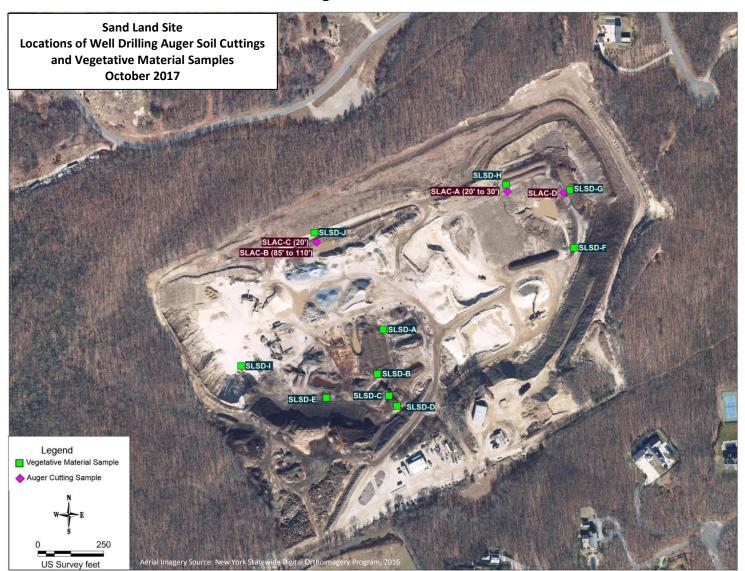
Lead

Lead was detected in all four surface/ponded water samples ranging from 14 ppb to 51 ppb. The sample collected from site SLSW-1 with a lead concentration of 51 ppb was slightly above the NYSDEC GEL for lead of 50 ppb.

Manganese

Manganese concentrations ranged from 71 ppb to 733 ppb, and was detected at all four sites. One sample, SLSW-3 with a concentration of 733 ppb, was above the NYSDEC GEL of 600 ppb.

Other Notable Results


Detections and concentrations of some other analytes are of note even though there is no NYSDEC GELS established for them. The potassium concentration in SLSW-3 was reported as 230 ppm and is more than three times higher than concentrations reported from the other three sites (21 ppm to 70 ppm). Also, the chlorinated pesticide Gamma-BHC had reportable detections at two sites, SLSW-1 (0.09 ppb) and SLSW-4 (0.08 ppb). A breakdown product of the pesticide atrazine (2-hydroxyAtrazibne) had a trace concentration in SLSW-2, and the pesticide Dichlorvos was detected at sites SLSW-3 and SLSW-4, each at 0.9 ppb. Bisphenol A was detected (0.2 ppb) at site SLSW-4, and bisphenol B was detected (0.7 ppb) at SLSW-2. Acetaminophen (SLSW-2, SLSW-3), caffeine (SLSW-1) and ibuprofen (SLSW-1) were detected at trace concentrations, and it should be noted that these compounds are typically associated with water that has been impacted by sewage related discharges.

2017 Analytical Results- On-Site Soil/Vegetative Material Piles

Four soil samples were collected during well installation from cuttings produced by the drilling augers at three different wells, SLOS-6, SLOS-7, and two samples from SLOS-9. Ten samples were collected from the piles of vegetative material located in close proximity to each of the well installation sites. All the solid samples were analyzed for volatile organic compounds (VOCs) and metals. Analytical results from these samples were compared to NYSDEC Part 375 Soil Cleanup Objectives Protection of Groundwater (SCO-PG) and Part 375 Soil Cleanup Objective Unrestricted Use Guidelines (SCO-UUG). A summary of the detected analytes is included in Appendix I. Figure

14 shows the locations of the samples collected from the well drilling auger soil cuttings and piles of vegetative material.

Well Drilling Auger Soil Cuttings

Four samples were collected from the soil brought up on the flights of the augers (soil cuttings) used to install three of the groundwater monitoring wells. A grab sample of the soil from the cuttings was collected when a visibly noticeable change in the soil coming up on the auger flights was observed (e.g., color, texture, etc.). These grab samples were analyzed for metals and VOCs as follows: the 0 to 25 fbg interval of SLOS-6 (SLAC-D); the 20 to 30 fbg interval of SLOS-7 (SLAC-A); samples from two different depths (at 20 fbg and the 85 to 110 fbg interval) of well SLOS-9 (SLAC-

C and SLAC-B respectively). It should be noted that a single grab sample (not a composite sample) was collected from the soil cuttings of each of the intervals indicated.

<u>Metals</u>

Eight different metals were detected in these samples, of these eight, only two metals (manganese and zinc) have NYSDEC SCO-PG and SCO-UUG. The reported concentrations for manganese, ranging from 88 ppm to 233 ppm, and zinc at 63.5 ppm were below the NYSDEC SCO-PG and SCO-UUG of 2,000 ppm and 1,600 ppm respectively for manganese, and 2,480 ppm and 109 ppm respectively for zinc.

Volatile Organic Compounds (VOCs)

Six VOCs were detected in the soil samples collected from the well drilling auger soil cuttings in three of the four samples collected. Three of the four samples had VOC detections. SLAC-D (from the soil cuttings of well SLOS-6 – 0 to 25 fbg) had five different VOCs detected as follows: methyl ethyl ketone (11 ppb), toluene (4 ppb), tetrachloroethene (6 ppb), n-butyl acetate (8 ppb) and total xylene (6 ppb). SLAC-C (from the soil cuttings of SLOS-9 - 20 fbg) reported triclorofluoromethane (5 ppb) and tetrachloroethene (6 ppb). SLAC-B (from the soil cuttings of SLOS-9 - 85 to 110 fbg) reported toluene (5 ppb) and tetrachloroethene (5 ppb). SLAC-A (from the soil cuttings of SLOS-7 - 20 to 30 fbg) had no VOC detections reported. All the reported concentrations were below the NYSDEC SCO-PG and SCO-UUG.

Vegetative Material

Grab samples were collected from the piles of vegetative material in close proximity to each of the monitoring wells installed. Table 8 indicates the sample IDs of each vegetative material sample collected and the corresponding monitoring well in the vicinity. Two vegetative samples were collected near monitoring well SLOS-3 due to the two contrasting types of material that were located nearby the well. Since SLOS-1 and SLOS-10 were located so close to each other (SLOS-10 was the deeper well that was not profiled), one sample (SLSD-A) was adequate.

-				
Vegetative	tative Proximate		Vegetative	Proximate
Sample ID	Monitoring Well		Sample ID	Monitoring Well
SLSD-A	SLOS-1		SLSD-F	SLOS-5
SLSD-B	SLOS-2		SLSD-G	SLOS-6
SLSD-C	SLOS-3		SLSD-H	SLOS-7
SLSD-D	SLOS-3		SLSD-I	SLOS-8
SLSD-E	SLOS-4		SLSDJ	SLOS-9

Table 8
Vegetative Material Samples and Proximate Monitoring Wells

<u>Metals</u>

Seven different metals were detected in these samples with manganese the only compound having NYSDEC SCO-PG and SCO-UUG (2,000 ppm and 1,600 ppm respectively). All the manganese concentrations were below the NYSDEC SCO-PG and SCO-UUG ranging from 50 ppm to 109 ppm. The same metals were detected in the vegetative material samples as were detected in the samples from the well drilling auger soil cuttings, with the exception of zinc.

Volatile Organic Compounds (VOCs)

VOCs were detected in four of the vegetative material piles. Concentrations in one of the samples exceed the NYSDEC SCO-PG and SCO-UUG as follows:

Acetone (SLSD-A)

The acetone concentration in sample SLSD-A was 72 ppb, which exceeded both the Part 375 Soil Cleanup Objective for the Protection of Groundwater and Part 375 Soil Cleanup Objective for Unrestricted Use Guideline, which are both 50 ppb. Six other VOCs were detected ranging from 4 ppb to 10 ppb. SLSD-6 had four different VOCs detected, while SLSD-F had three detected, SLSD-J had two detections, while SLSD-A had only the acetone. The remaining six samples had no VOC detections reported.

2017 Direction of Groundwater Flow Determined from On-Site Wells

The on-site groundwater flow direction was determined using nine temporary wells (SLOS-1 through SLOS-9) screened at or near the water table. Table 5 provides information on the monitoring wells installed and/or sampled in 2017. The wells were surveyed using the NGVD 29 datum from a permanent monitoring well (S-58959) located south of the site on Millstone Road. The equipment used for the groundwater flow direction survey was a Topcon AT-G2 auto level with tripod, fiberglass leveling rods (in feet/10ths), and depth to water was recorded using a Solinst Model 101 water level meter (in feet/10ths). The AT-G2 auto level and leveling rods were used to determine the differences in height between monitoring wells. The leveling rods were placed on a defined measuring point (MP) which was the top of the well casings. The auto level was set up between two monitoring wells and used to record the difference in height between the two wells. This process was performed twice to ensure an accurate reading. After the heights were recorded, the auto level was then moved between the last monitoring well that was recorded and a new one. This process was continued until the heights of all the monitoring wells were recorded. When this process was completed for all the wells, the Solinst water level meter was used to determine the depth to groundwater (DTW) from the MP. The DTW was then subtracted from the MP and a groundwater elevation in feet above mean sea level (FAMSL) was calculated.

Table 9 provides the information on the elevation of the measuring point, depth to water, the

groundwater table elevation in feet above mean sea level (FAMSL) and the latitude and longitude of all on-site wells. Table 9 also includes land surface elevations (in feet above mean sea level) for three locations (Center, West and NW Corner) in which temporary profile wells were originally planned but could not be installed due to site specific logistical issues. Suitable alternative sites for these wells were located and they were installed as wells SLOS-9, SLOS-4 and SLOS-8. Due to the large size of the site, over one third mile long, the area was split into two quadrants (eastern and western) when determining the groundwater flow. Water table elevation data from the monitoring wells in each quadrant were used to determine the groundwater flow contours. Groundwater in the eastern section of the site flows in a westerly to slightly

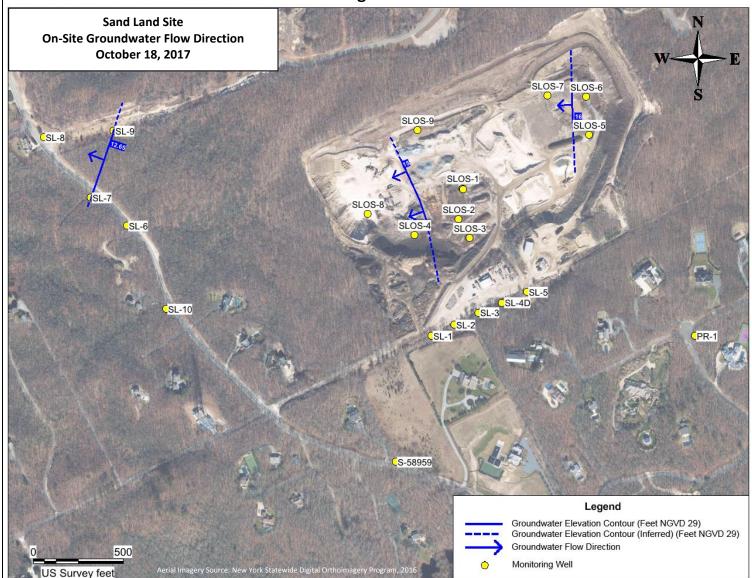


Figure 15

northwesterly direction and groundwater on the western section flows westerly with a slight south westerly component (Figure 15). As groundwater moves offsite the flow characteristics

Table 9

Elevation Information 2017 On-site Wells and Planned Well Sites

			Elevation				
			of	Depth to	Depth to	Groundwater	Groundwater
			Measuring	Water	Water	Elevation	Elevation
			Point	(FBG)+	(FBG)+	(FAMSL)*	(FAMSL)*
			(FAMSL)*	(Collected	(Collected	(Collected	(Collected
Well ID	Longitude	Latitude	(NGVD 29)	10/17/2017)	10/18/2017)	10/17/2017)	10/18/2017)
SLOS-1	-72.34099	40.97314	166.94	151.53	151.52	15.41	15.42
SLOS-2	-72.34107	40.97267	165.85	150.52	150.50	15.33	15.35
SLOS-3	-72.34085	40.97239	170.77	155.81	155.81	14.96	14.96
SLOS-4	-72.34196	40.97243	157.85	143.00	143.00	14.85	14.85
SLOS-5	-72.33845	40.97396	159.46	143.28	143.32	16.18	16.14
SLOS-6	-72.33850	40.97454	153.29	137.12	137.16	16.17	16.13
SLOS-7	-72.33928	40.97455	156.52	140.72	140.74	15.80	15.78
SLOS-8	-72.34290	40.97276	157.98	143.47	143.46	14.51	14.52
SLOS-9	-72.34190	40.97403	165.42	150.14	150.14	15.28	15.28
SLOS-10	-72.34098	40.97313	166.86	151.47	151.47	15.39	15.39
Center [#]	-72.34193	40.97369	145.764^	-	-	-	-
West [#]	-72.34250	40.97239	151.8875^	-	-	-	-
NW Corner [#]	-72.34338	40.97341	158.7886^	-	-	-	-
PR-1	-72.33631	40.97090	226.62	-	210.07	-	16.55
S-58959	-72.34238	40.96902	186.97	-	172.08	-	14.89
SL-1	-72.34162	40.97090	223.25	-	208.53	-	14.72
SL-2	-72.34116	40.97107	220.78	-	205.41	-	15.37
SL-3	-72.34068	40.97125	218.77	-	204.31	-	14.46
SL-4S	-72.34020	40.97140	217.40	-	201.78	-	15.62
SL-5	-72.33970	40.97157	215.51	-	200.70	-	14.81
SL-6	-72.34776	40.97258	175.99	-	164.10	-	11.89
SL-7	-72.34849	40.97301	169.45	-	156.80	-	12.65
SL-8**	-72.34849	40.97301	162.05	-	103.50	-	58.55**
SL-9	-72.34803	40.97402	198.87	-	186.22	-	12.65
SL-10	-72.34697	40.97131	191.35	-	179.03	-	12.32

* FAMSL – Feet Above Mean Sea Level

+ FBG – Feet Below Grade

Originally planned well sites, however wells locations were moved due to site specific logistical issues.

^Elevation of Land Surface (FAMSL). Collected using Leica CS20 controller with GS16 smart antenna

** Anomalous water table elevation, groundwater appears to be perched above the regional groundwater table. Not used in groundwater contouring.

- Not collected

takes on a more northwesterly flow direction. This off-site flow characteristic is consistent with the off-site groundwater flow direction observed in 2016 (Figure 3), and the report from the United State Geological Survey⁷.

⁷ <u>Ground-Water Flow Paths and Traveltime to Three Small Embayments within the Peconic Estuary, Eastern Suffolk County, New</u> <u>York</u>, 1999, United States Geological Survey, Water-Resources Investigations Report 98-4181

It should be mentioned that, although there can be localized variability on a large site due to changing recharge conditions within the site, the groundwater flow direction determined from the on-site wells is consistent with the regional groundwater flow direction determined in USGS Report 98-4181. Additionally, as indicated in Table 9, water table elevation measurements were collected from the on-site wells on two different dates, October 17 and October 18, 2017, and show little change, indicating negligible variability between the measurements. These water table elevation measurements were collected during a time of little or no precipitation for the previous 72 hours. Also, it should be noted that the ponded water located on the eastern portion of the property in the vicinity of SLOS-5, SLOS-6 and SLOS-7 (Figure 15) had no standing water and was completely dry. The aerial photographs used throughout this report displaying the sample locations is from 2016, and the site conditions depicted on this photograph are not representative of the site conditions in October 2017.

Using the hydrogeological information from the on-site monitoring wells and the groundwater elevations, estimates of the horizontal and vertical groundwater gradients were determined. An estimate of the horizontal gradient between well SLOS-1 and SLOS-8 was determined to be 0.0164. A downward vertical gradient was detected between the shallow and deep wells SLOS-1 and SLOS-10, respectively. This finding indicates that this area is a groundwater deep recharge area, and therefore a vital groundwater protection area. The contamination detected at multiple levels in the profile wells on-site is likely due to the presence of a downward vertical flow component.

The geologic characteristics beneath the site were determined through observations made during the construction of the well through examination of drill soil cuttings coming to the surface. In addition geophysical logs were used to determine characteristics of formation. A gamma log was performed through the hollow stem augers prior to the well installation in order to assure wells were not screened in low permeable zones. In all cases the logs indicate no clays or silts zones were encountered except in well SLOS-8. The soil characteristics in the eastern and mid-section of the mine were mostly comprised of fine to coarse sands with some gravel present. Wells installed in the most western portion of the mine did show the presence of silts and clays. Wells installed in the most eastern portion of the mine did show a surface layer (up to 30 feet thick) of dark organic soil underline by sand and gravel typically encountered in the mine at other drill sites. Geophysical gamma logs did verify the majority of the material beneath the mine was sand and only in the western portion of the mine were silts and clays encountered. Geophysical gamma logs and well drilling completion reports and are provided in Appendix B and Appendix J, respectively.

2018 Private Well Survey

Upon review of the data obtained from the 2017 on-site monitoring wells, the SCDHS reassessed the private well survey area used in 2013-2106 and is in the process of sampling additional private

wells downgradient of the Sand Land. In March of 2018, the SCDHS identified thirty six properties potentially served with private wells (twenty-one initially identified in the 2013-2016 private well survey west and northwest of the site, and fifteen new homes) that are located generally downgradient of the subject site. Notices offering free testing have been mailed and delivered to all thirty six homeowners. Sample results from private wells completed to date have not indicated any apparent water quality impacts from VOWM activities. However, the survey is still on-going at this time and the water quality results will continue to be evaluated as they are completed. All of the samples are being analyzed by the SCDHS PEHL with the exception of the perfluoroalkyl substances (PFASs), which is being analyzed by New York State's Wadsworth Laboratory. The analyte groups being run are indicated in Table 10. Note that a list of individual parameters analyzed in each analysis group is included in Appendix C.

Analysis Group	Analysis Group
Metals	Chlorinated Pesticides
Volatile Organic Compounds	1,4-Dioxane
Semi-Volatile Organic Compounds	Dacthal
Standard Inorganics	Herbicide Metabolites
Radionuclides	Carbamate Pesticides
Microextractables	Bacteria
Perfluoroalkyl Substances (PFASs)*	MBAS

Table 10
SCDHS PEHL Analyte Groups Run on 2018 Private Well Samples

*This analysis performed by New York State Wadsworth Laboratory.

Discussion

The work performed in this investigation was undertaken to comply with Suffolk County Resolution Number 245-2015, which directed the SCDHS to determine the direction of groundwater flow in the vicinity of the Sand Land site, and to install monitoring wells to test for the presence of various contaminants, including metals, inorganic compounds, volatile and semivolatile organic compounds, and radionuclides. The SCDHS installed a total of twenty-one monitoring wells, collected eighty-three groundwater samples, 4 surface water samples, 4 soil samples and 10 samples of vegetative material for this investigation.

The groundwater results are generally consistent with impacts observed from other VOWM sites studied throughout Suffolk County. Elevated metals, in particular manganese, iron and to a lesser extent thallium, potassium and cobalt were observed. Table 11 depicts a comparison of detection frequency, maximum and mean concentrations of the metals detected in the on-site groundwater wells at the Sand Land site to statistics of approximately 1,800 untreated shallow⁸ private well

⁸ Private wells are typically screened forty feet into the water table, within the shallow aquifer, in accordance with the minimum requirements in the Suffolk County Department of Health Private Water Systems Standards, July 1992.

Table 11Comparison of Metals DataSand Land On-Site Wells and Suffolk County Private Wells

Parameter	Investigation	# Samples Analyzed	# of Samples with Detection	% Samples with Detection	Maximum Concentration Detected	Overall Mean Concentration [#]	Mean Concentration of Detected^
Aluminum (ppb)	Sand Land On-Site Wells	32	32	100%	630	175	175
Aldinindin (ppb)	Suffolk Shallow Private Wells*	1,809	969	54%	2,580	39	70
Arsenic (ppb)	Sand Land On-Site Wells	32	2	6%	2	0.6	1.6
Arsenic (ppb)	Suffolk Shallow Private Wells	1,809	56	3%	7	0.6	2.1
Barium (ppb)	Sand Land On-Site Wells	32	32	100%	747	222	222
Danum (ppb)	Suffolk Shallow Private Wells	1,809	1,754	97%	954	40	41
Calcium (ppm)	Sand Land On-Site Wells	32	32	100%	62	44	44
Calcium (ppm)	Suffolk Shallow Private Wells	1,813	1,790	99%	125	13	13
Chromium (ppb)	Sand Land On-Site Wells	32	25	78%	9.6	2.6	3.2
Cirronnum (ppb)	Suffolk Shallow Private Wells	1809	334	18%	30	0.7	1.7
Cobalt (nab)	Sand Land On-Site Wells	32	16	50%	107	12	24
Cobalt (ppb)	Suffolk Shallow Private Wells	1,809	73	4%	30	0.6	4
(Sand Land On-Site Wells	32	6	19%	13	3.6	8.3
Copper (ppb)	Suffolk Shallow Private Wells	1,809	1,717	95%	2,727	123	129
1	Sand Land On-Site Wells	32	22	69%	62	6.3	9.2
Iron (ppm)	Suffolk Shallow Private Wells	1,809	673	37%	33	0.4	1.2
	Sand Land On-Site Wells	14	8	57%	1.7	1.0	1.4
Lithium (ppb)	Suffolk Shallow Private Wells	1,149	144	13%	16	0.7	2.2
	Sand Land On-Site Wells	32	32	100%	33	13	13
Magnesium (ppm)	Suffolk Shallow Private Wells	1,815	1,780	98%	221	4.9	5.0
	Sand Land On-Site Wells	32	32	100%	26,211	2,467	2,467
Manganese (ppb)	Suffolk Shallow Private Wells	1,809	1,607	89%	20,421	123	139
	Sand Land On-Site Wells	32	1	3%	1.5	0.5	1.5
Molybdenum (ppb)	Suffolk Shallow Private Wells	1,764	14	1%	17	0.5	3.4
	Sand Land On-Site Wells	32	32	100%	36	6.8	6.8
Nickel (ppb)	Suffolk Shallow Private Wells	1,764	1,392	79%	290	2.1	2.6
	Sand Land On-Site Wells	32	32	100%	161	26	26
Potassium (ppm)	Suffolk Shallow Private Wells	1,814	1,749	96%	59	2.4	2.5
	Sand Land On-Site Wells	32	32	100%	33	13	13
Sodium (ppm)	Suffolk Shallow Private Wells	1,788	1,787	100%	1,360	24	24
	Sand Land On-Site Wells	32	32	100%	481	213	213
Strontium (ppb)	Suffolk Shallow Private Wells	1,763	1,735	98%	1,021	69	70
	Sand Land On-Site Wells	32	6	19%	0.5	0.2	0.4
Thallium (ppb)	Suffolk Shallow Private Wells	1,764	18	1%	7.3	0.1	0.8
Tite sizes (see b)	Sand Land On-Site Wells	32	25	78%	37	10	13
Titanium (ppb)	Suffolk Shallow Private Wells	1,764	42	2%	32	0.6	3.3
Hundrey (Sand Land On-Site Wells	32	12	38%	18	1.5	3.6
Uranium (ppb)	Suffolk Shallow Private wells	1,764	9	0.5%	3	0.4	1.7
	Sand Land On-Site Wells	32	12	38%	2.8	0.9	1.6
Vanadium (ppb)	Suffolk Shallow Private Wells	1,764	59	3%	15	0.6	2.9
- , , , ,	Sand Land On-Site Wells	32	8	25%	34	4.6	11
Zinc (ppb)	Suffolk Shallow Private Wells	1,764	1,181	67%	20,316	141	200

* Untreated water quality data from private wells collected by the SCDHS from January 2010 – December 2017. Data are from private wells samples collected throughout all of Suffolk County, including seven private wells analyzed as a part of the 2013-2016 Sand Land private well survey.

One half the detection limit was used in the calculation of the mean for samples that had concentrations reported as not detected.

[^] This is the mean concentration of only the samples that had concentrations above their respective detection limits.

samples collected throughout Suffolk County from 2010 to 2017. For comparison purposes, the data from these private wells can be considered "typical" shallow groundwater quality in Suffolk County. The table indicates that most metals were detected at higher frequency in the samples collected from the Sand Land site when compared to the those in "typical" Suffolk County private wells. Metals with a significantly higher detection frequency (more than 10 times) include cobalt (13 times), thallium (19 times), titanium (39 times), uranium (76 times) and vanadium (13 times). The overall mean concentrations⁹ were significantly higher (greater than 10 times) in the Sand Land groundwater samples than the overall mean concentrations calculated from the 1,800 private wells for cobalt (20 times higher), manganese (20 times higher), and potassium (11 times higher). Also, Table 12 shows that a higher than typical detection frequency (44% vs. 10%) and mean concentrations of gross alpha (2.9 pCi/l vs. 0.65 pCi/l) were observed in the Sand Land on-site samples than in Suffolk County shallow private wells.

Table 12

Comparison of Gross Alpha Concentrations Suffolk County Private Wells (1997-2014) and On-Site Sand Land Temporary Profile Wells

	# Samples Analyzed	Number of Detections	% Samples With Detections	Maximum Concentration (pCi/l)	Mean Concentration (pCi/l) ⁷	Mean of Detects (pCi/l)	Number of Samples Exceeding MCL of 5 pCi/l	% of Samples Exceeding MCL of 5 pCi/l
Sand Land On-Site Wells	32	14	44%	22	2.9	6	1	3%
SCDHS Private Well Samples 1997-2014	1,231	118	10%	21	0.65	2.0	1	0.09%

Trace and low level detections of pesticides and wastewater related compounds were also observed, consistent with observations of other VOWM sites. Nitrates were elevated in some wells, and although some of the previously studied VOWM sites had elevated nitrates, due to past or current agricultural site use, relating these impacts to VOWM activity was not possible. However, historical aerial photographs of the Sand Land site (Appendix F) do not indicate recent or past agricultural use of the site, and therefore the elevated nitrates observed at Sand Land appear to be a result of site related VOWM activities.

Historical aerial photographs of the Sand Land site from 1962, 1969-70, 1978, 1984, 1996, 2001, 2004, 2007, 2010, 2013, 2016 and 2017 are included in Appendix F. The monitoring well locations from the 2017 on-site investigation are indicated on each photo for reference. A review of these photos shows the progression of land clearing across the parcel as the site was mined for sand. The photos from 1996 forward clearly indicate a darker material, most likely organic in nature, being stored on site in various piles. It appears as though this material was primarily stored in the center and western portions of the property, consistently through 2017. Later photos (2007 and

⁹ In the calculation of the overall mean, a value of one-half the reporting limit was used in the calculations for results reported as not detected (less than the reporting limit).

later) indicate the presence of organic appearing windrows in various locations throughout the site (north, south, east, etc.). Piles of material that do not appear to be organic in nature (gray or silver in appearance) are also evident since 2001. The photos also show various excavations and regrading activities that has taken place over the site in the 55 years of the photographic record, as well as a number of surface water ponds/ditches that appear or disappear throughout the photographic record, a few of which are fairly consistently present. These photos demonstrate that the majority of the Sand Land site has been used for mining and VOWM related activities.

Figure 16 depicts the locations of the off-site monitoring wells sampled in 2015, and the on-site wells installed and sampled in October of 2017. A review of the geospatial distribution of impacted wells reveals a few general distinguishable patterns. Monitoring wells generally located on the northern portion of the site (SLOS-6, SLOS-7 and SLOS-9) had greater impacts from

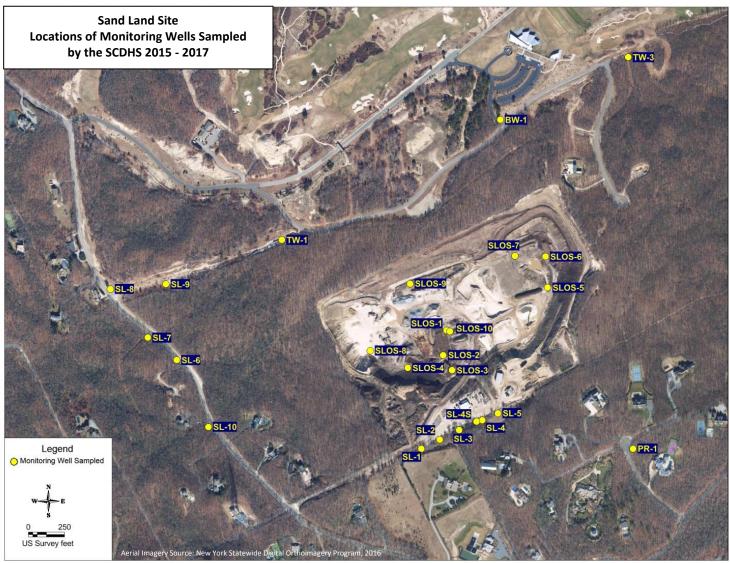
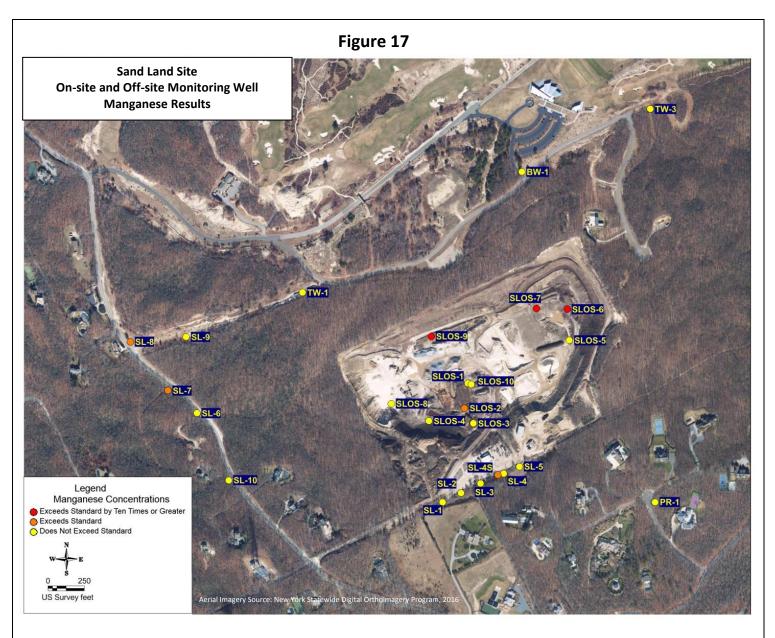
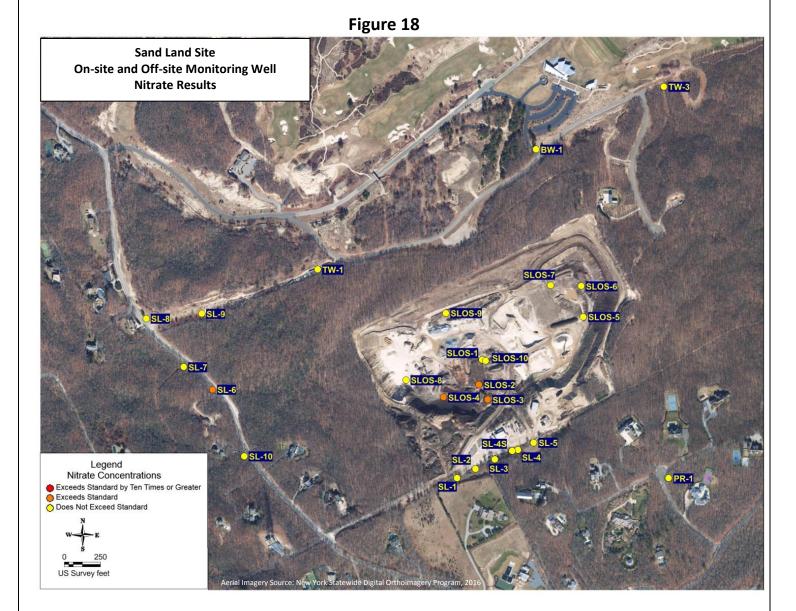




Figure 16

manganese, iron, thallium and ammonia. This trend is consistent with respect to manganese and iron in off-site wells, as SL-7 and SL-8 (the most northern monitoring wells on Millstone Road) exhibited impacts from iron and manganese (Figure 17 and Figure 18). It has been noted that the lithology observed at well SL-8 is complex, and that this well exhibits perched water conditions. Iron and manganese concentrations were elevated in every profile level tested in this well (including the upper levels). The cause of this and the role the identified clay/silt layers have on locally limiting downward water/contaminant migration, or other hydrological impacts, is unknown. However, it should also be noted that the deepest profile level of SL-8 (170 - 175 fbg), in addition to elevated iron and manganese concentrations, exhibited detections of other analytes the SCDHS has associated with VOWM groundwater impacts in the past (and were detected onsite), including gross alpha (5.2 pCi/l), bisphenol A (trace), DEET (0.3 ppb) and caffeine (trace). Due to the complexities associated with the information from this well, no definitive conclusions regarding the source(s) of the degraded water quality identified in well SL-8 can be made. This is also true with respect to the iron and manganese impacts observed in SL-6, SL-7 and SL-9, as the

elevated concentrations were observed in the upper profile levels. Again, the role of the clay/silt layers observed in these wells above the water table, and the localized effect this may have on the downward water/contaminant migration from the site is unknown, resulting in no definitive conclusions regarding the source(s) of the elevated iron and manganese in these wells.

Monitoring wells located in the central/southern section of the site (SLOS-2, SLOS-3 and SLOS-4) exhibited elevated concentrations of nitrate. Off-site well SL-6 had the highest nitrate observed concentration (23 ppb), and is located slightly to the northwest of the SLOS-2, SLOS-3 and SLOS-4 well locations (Figure 19). These observations appear to be consistent with the groundwater flow direction of westerly /slightly northwesterly in the eastern section of the site, and a westerly/slight south westerly direction on the western section of the site, with a northwesterly flow direction as groundwater moves off of the site, that was determined by the 2015-16 off-site work and 2017 on-site work. Additionally, this elevated nitrate concentration was observed in the

deepest profile level of well SL-6 (200 – 205 fbg) and is therefore likely attributable to an on-site source. Figure 13 indicates the on-site surface/ponded water sample locations, and the concentrations of the analytes noted to be above an established NYSDEC GEL. The source of the water at these locations is presumed to be storm water run-off, and the quality of the water influenced by material that is on the ground and/or in nearby windrows or piles. Although some variations in the concentrations of the analytes are noted, there does not appear to be an obvious discernable geospatial pattern to the more elevated concentrations of metals. Low concentrations of some pesticides may be due to run-off from vegetative organic material brought into the site. Also, it should be noted that low concentrations of analytes typically related to water impacted by septic waste (e.g., acetaminophen, caffeine and ibuprofen) were identified, and that a potential source for these compounds is unknown.

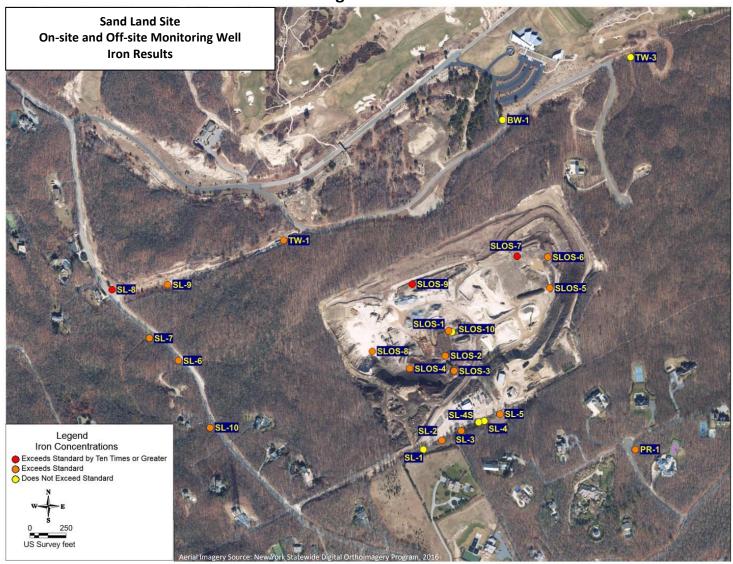
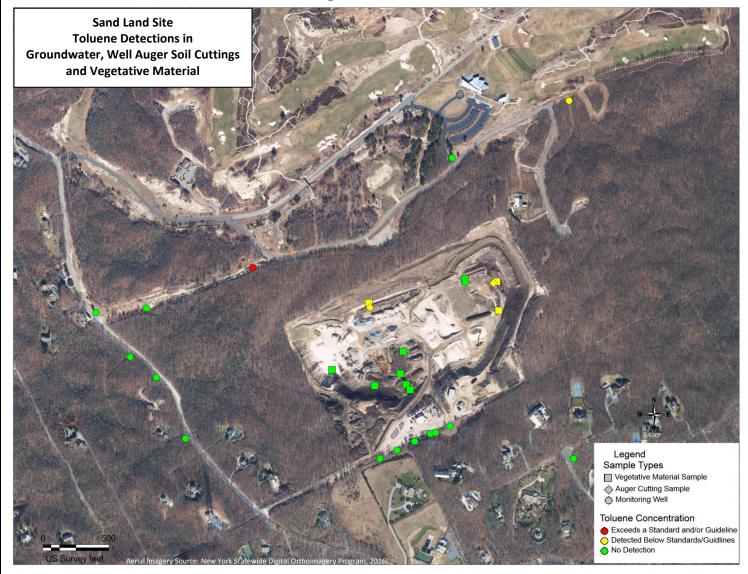


Figure 19

Three of the four soil samples collected from the monitoring well drilling soil cuttings exhibited impacts from volatile organic compounds (VOCs) at concentrations below the NYSDEC SCO-PG and SCO-UUG. Two of the samples (SLAC-B and SLAC-C) were collected from the soil cuttings of the same well (SLOS-9) at different depths (20 fbg and a grab sample from the 85 to 110 fbg interval). Both of these samples contained tetrachloroethene, a chlorinated solvent, at a concentration of 5 ppb and 6 ppb, respectively, (compared to the NYSDEC SCO-PG and SCO-UUG both of which are 1300 ppb). SLAC-B had a detection of toluene, a petroleum product and common solvent, at a concentration of 5 ppb, (compared to NYSDEC SCO-PG and SCO-UUG both of which are 700 ppb). A sample of the vegetative material (SLSD-J) located in close proximity to SLOS-9 also exhibited detections of toluene and tetrachloroethene at concentrations below NYSDEC SCO-PG and SCO-UUG, 8 ppb and 9 ppb respectively. If vegetative material similar in quality to SLSD-J was used for grading and reclamation in the vicinity of SLOS-9, this may be the source of the VOC findings at the two depths in the SLOS-9 auger soil cuttings (20 fbg and 85 – 110 fbg). Figure 14 depicts the locations of the samples collected from vegetative material piles and samples collected from monitoring well installation auger soil cuttings.


With respect to the number of VOCs detected, the auger soil cuttings from well SLOS-6 (a grab sample SLAC-D collected from the 0 to 25 fbg drilling interval) had five different VOCs detected (methyl ethyl ketone (11 ppb), toluene (4 ppb), tetrachloroethene (6 ppb), n-butyl acetate (8 ppb) and total xylene (6 ppb)), which was the most of any soil or vegetative material sample. The vegetative material sample located in the vicinity of SLOS-6 (SLSD-G) exhibited detections of four of the same VOCs found in SLAC-D (all except methyl ethyl ketone), all at concentrations below the NYSDEC SCO-PG and SCO-UUG. This indicates that the same VOC containing vegetative material piled near SLOS-6 is present in the 0 to 25 fbg interval in the soil.

The auger soil cuttings from SLOS-7 (a grab sample collected from the 20 to 30 fbg interval) did not detect VOCs, and the corresponding vegetative material sample collected in the vicinity of this well (SLSD-H) also had no VOC detections. The sample from the vegetative material pile located in the vicinity of well SLOS-5 (SLSD-F) had three VOCs detected (toluene (5 ppb), tetrachloroethene (10 ppb) and total xylene (5 ppb)), all at concentrations below the NYSDEC SCO-PG and SCO-UUG. Auger soil cuttings from the installation of SLOS-5 were not collected, so a comparison to the vegetative material detections in SLSD-F cannot be performed. The vegetative material collected near well SLOS-1 (SLSD-A) had a detection of acetone of 72 ppb, which exceeds both the NYSDEC SCO-PG and SCO-UUG of 50 ppb. Auger soil cuttings from SLOS-1 were not collected, so no comparison can be made.

It should be noted that the only groundwater volatile organic compound parameter to exceed a GW/DWS was toluene, which was collected from the off-site well TW-1 located on the southern portion of The Bridge golf course property. The reported concentration was 9 ppb, and the GW/DWS is 5 ppb. This well is located north of the Sand Land site, and northwest of wells SLOS-6

and SLOS-9. Well drilling auger soil cuttings for both of these wells (SLAC-B and SLAC-D) indicated the presence of toluene, as did the vegetative material sampled in the vicinity of these wells (Figure 20). The vegetative material sampled in the vicinity of SLOS-5 (SLSD-F), located just south of SLOS-6, also indicated the presence of toluene, however, no auger soil cuttings were sampled during the installation of this well. Considering the west/northwest groundwater flow direction that was determined for the eastern portion of the site, well TW-1 could be considered downgradient of the soil and vegetative material that had detections of toluene, and these could be a potential source of the toluene. However, since groundwater samples in SLOS-5, SLOS-6 and SLOS-9 did not contain detections of toluene in the groundwater, and this well had a recently installed submersible pump, no definitive conclusions can be made.

Figure 20

Conclusions

Due to concerns that were raised regarding potential impacts to groundwater quality from VOWM activities conducted at the Sand Land site, the Suffolk County Legislature passed a resolution directing the SCDHS to determine the direction of groundwater flow in the vicinity of the Sand Land site, and to install monitoring wells to test for the presence of various contaminants. The investigation described in this report was undertaken in accordance with this resolution. The results indicate that the groundwater flow direction in the eastern section of the site flows in a westerly to slightly northwesterly direction, and groundwater on the western section of the site flow characteristics will take on a more northwesterly flow direction. Additionally, data from wells installed on the site suggest the presence of downward vertical groundwater flow component, indicating this is a vital groundwater protection area. This also suggests that contaminants released on the site may flow into deeper portions of the aquifer.

The SCDHS installed a total of twenty-one monitoring wells, collected eighty-three groundwater samples, 4 surface water samples, 4 soil samples and 10 samples of vegetative material for this investigation. The analytical results from the groundwater samples indicate impacts of elevated metals concentrations that are consistent with results observed at other VOWM sites throughout Suffolk County, and are attributable to the VOWM activities performed at these sites. It should be noted that impacts to the groundwater quality were observed despite the significant depth to the water table encountered at the site (137 feet to 154 feet). In the on-site groundwater monitoring wells iron and manganese were found to significantly exceed drinking water and groundwater standards in multiple wells. Manganese exceeded the standards by almost 100 times and iron by over 200 times. Other constituents that were also found above drinking water and groundwater standards in on-site monitoring wells were thallium, sodium, nitrate, ammonia and gross alpha. Manganese, iron, nitrate and toluene were observed in the off-site groundwater of downgradient wells at concentrations exceeding standards and/or guidance values. Surface/ponded water samples were collected from four locations on the site. Elevated metals concentrations as well as low and trace concentrations of two pesticides were detected in some of the surface/ponded water samples collected on site. These pesticide detections are likely attributable to run-off from vegetative organic material brought into the site. Also, low and trace concentrations of analytes commonly related to water impacted by septic waste (e.g., acetaminophen, caffeine and ibuprofen) were identified in the surface/ponded water, a potential source for these compounds is unknown.

Samples of the soil cutting from the well drilling augers used to install the monitoring wells, and samples of vegetative material stored on the site indicated low concentrations of VOCs that did not exceed NYSDEC soil criteria. Toluene detected in an off-site monitoring well located on The Bridge golf course property, north of the site, is downgradient of toluene detected in soils and vegetative material on site, however since water samples collected in the groundwater near the

soil and vegetative material containing the toluene did not detect toluene, definitive conclusions as to the source of toluene in the off-site monitoring well cannot be made.

The SCDHS identified thirty six properties potentially served with private wells that are generally located downgradient of the subject site. Sample results from private wells completed to date have not indicated any apparent water quality impacts from VOWM activities. Since the on-site area has been identified as a deep recharge area (vertical downward groundwater flow), there is the possibility that as contaminants move off-site into the areas with private wells, the contaminants are located deeper in the aquifer, below the well screens of the private wells. However, the complex lithology of the area (i.e., presence of clay/silt layers) can have a localized impact on the vertical migration of water and/or contaminants (e.g. perched water) as it moves off of the site. The survey is still on-going at this time, and the water quality results will continue to be evaluated as they are completed.

Recommendations

- The SCDHS should complete sampling of the private wells in the survey area to assess
 possible impacts to private drinking water wells to the west and northwest of the site.
 Based upon the groundwater information obtained in this investigation, and the results of
 the private well testing thus far, the extent of the private well survey area previously
 determined is appropriate.
- Responsible state and local agencies (e.g., NYSDEC, Town of Southampton, etc.) should ensure that the activities conducted at the Sand Land facility are in compliance with all applicable codes, ordinances, permit requirements, etc. and that the activities at the site do not further impact groundwater quality.
- Should responsible regulatory agencies determine that VOWM activities are allowed to
 occur at this site, there should be requirements to ensure that mechanisms are in place to
 prevent operating practices from further detrimentally impacting groundwater and surface
 water quality. New York State Environmental Conservation Law section 15-0517 became
 effective on January 1, 2018 and requires groundwater testing and impermeable liners for
 land clearing debris and composting facilities; NYSDEC is in the process of establishing
 regulations. Since significant groundwater impacts have been identified, the requirements
 of the new law should be implemented as early as practicable.
- The NYSDEC should continue to inspect the facility to ensure that all materials being brought to the site are free of contamination.

APPENDIX

A

Suffolk County Resolution No. 245-2015

Intro. Res. No. 1158-2015 Introduced by Legislators Schneiderman and Hahn Laid on Table 3/3/2015

RESOLUTION NO. 245 -2015, DIRECTING THE DEPARTMENT OF HEALTH SERVICES TO CONDUCT GROUNDWATER TESTS FOR TOXIC CHEMICALS AT A COMPOSTING FACILITY IN NOYACK, TOWN OF SOUTHAMPTON

WHEREAS, composting activity is being conducted by the Sandland Corporation, at a facility located in Noyack, Town of Southampton, SCTM No. 0900-023.00-01.00-001.000; and WHEREAS, this composting facility is located in a sole source aquifer area containing high quality water resources; and

WHEREAS, recent findings from a study conducted by the New York State Department of Environmental Conservation and the Suffolk County Department of Health Services on the operations at a facility on Horseblock Road, Yaphank, demonstrate the significant potential for groundwater impacts associated with composting operations; and

WHEREAS, current groundwater monitoring at the Noyack composting facility is inadequate, as it provides little or no information about drinking water quality in the surrounding community; and

WHEREAS, Noyack residents are justifiably concerned about the health and environmental risks posed by composting, which can be associated with groundwater contaminants such as manganese; and

WHEREAS, Noyack residents are requesting that the County of Suffolk perform additional groundwater monitoring at the Noyack composting facility to ensure that groundwater in the vicinity is not being adversely impacted; and

WHEREAS, the Suffolk County Department of Health Services regularly conducts groundwater tests to detect health hazards and to protect public safety; and

WHEREAS, the Department of Health Services should test the groundwater in the vicinity of the Noyack composting facility to determine whether similar testing should be conducted at other sites where composting occurs; now, therefore be it

1st **RESOLVED**, that the Suffolk County Department of Health Services is hereby authorized, empowered and directed to determine the direction of groundwater flow in the vicinity of the Noyack composting facility and to install groundwater monitoring wells to test for the presence of heavy metals, including manganese, inorganics, volatile and semi-volatile organic compounds and radioactive contaminants (radionuclides) and any other contaminants associated with composting facilities; and be it further

2nd RESOLVED, that the Department of Health Services is directed to keep the Noyack community informed of their testing program through public meetings, news releases and other types of community outreach; and be it further

3rd RESOLVED, that the Department of Health Services will conduct their groundwater quality investigation within 120 days of the effective date of this resolution; and be it further

4th **RESOLVED**, that the Department of Health Services shall compile and deliver a report to this Legislature with their findings, within 60 days of the completion of their investigation; and be it further

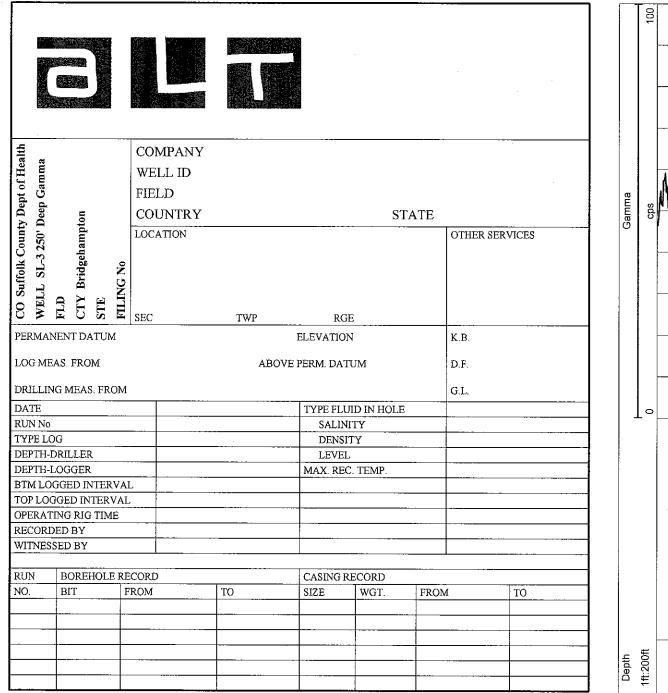
5th **RESOLVED**, that this Legislature, being the State Environmental Quality Review Act (SEQRA) lead agency, hereby finds and determines that this resolution constitutes a Type II action pursuant to Section 617.5(c)(20), (21) and (27) of Title 6 of the NEW YORK CODE OF RULES AND REGULATIONS (6 NYCRR) and within the meaning of Section 8-0109(2) of the NEW YORK ENVIRONMENTAL CONSERVATION LAW as a promulgation of regulations, rules, policies, procedures, and legislative decisions in connection with continuing agency administration, management and information collection, and the Suffolk County Council on Environmental Quality (CEQ) is hereby directed to circulate any appropriate SEQRA notices of determination of non-applicability or non-significance in accordance with this resolution.

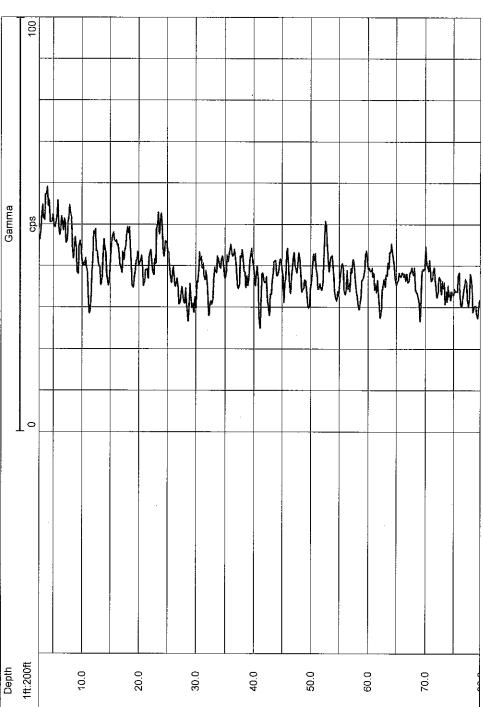
DATED: April 28, 2015

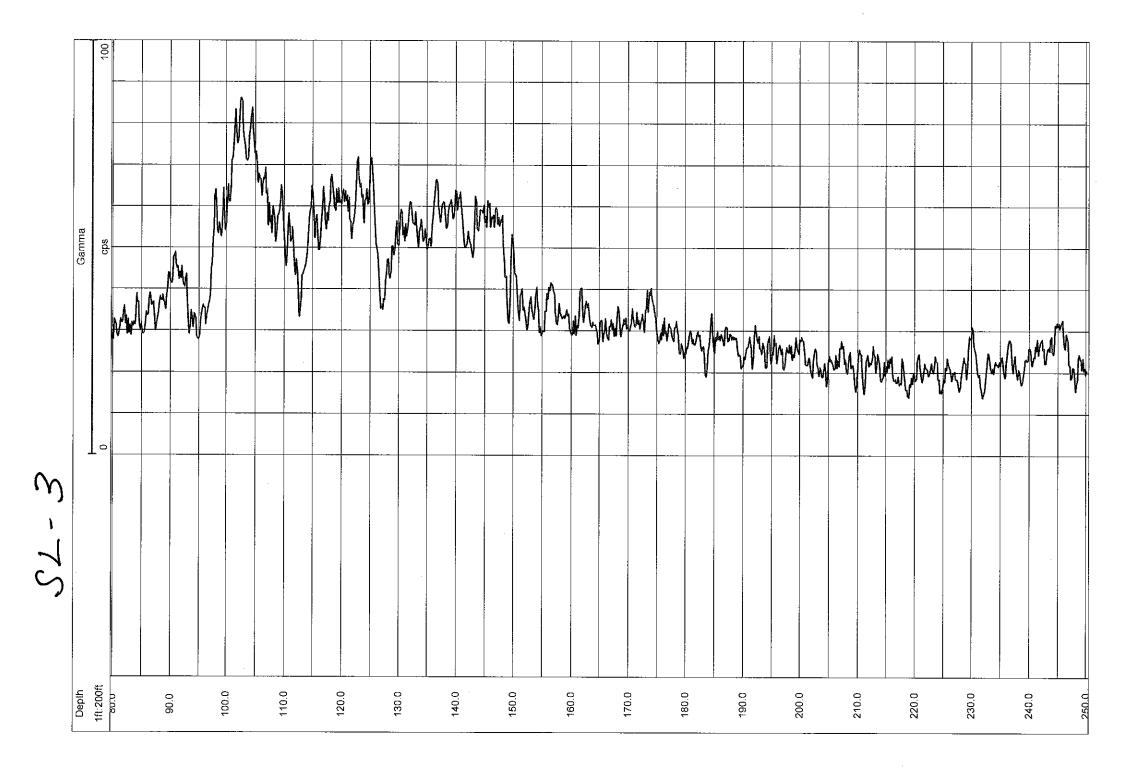
APPROVED BY:

/s/ Steven Bellone County Executive of Suffolk County

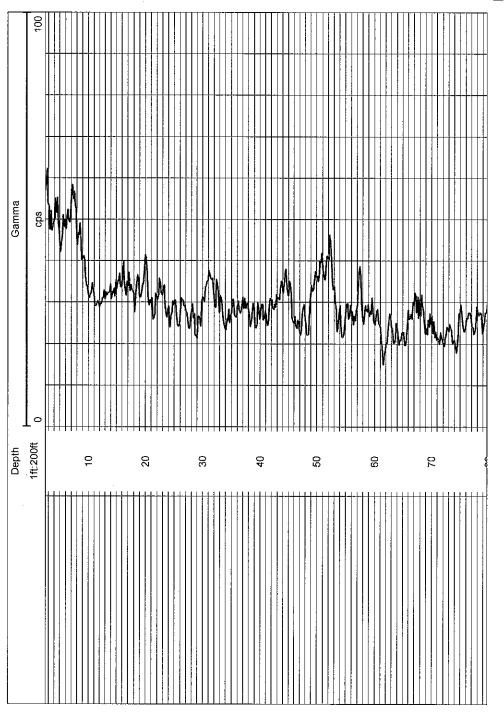
Date: May 7, 2015


APPENDIX

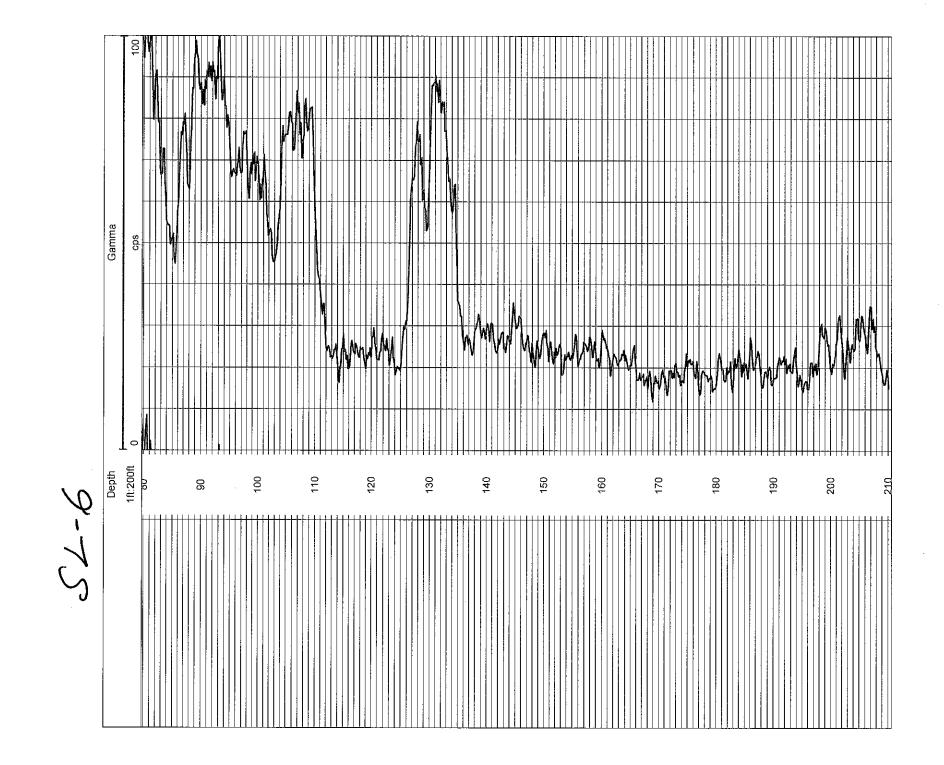

В


Geophysical Logs

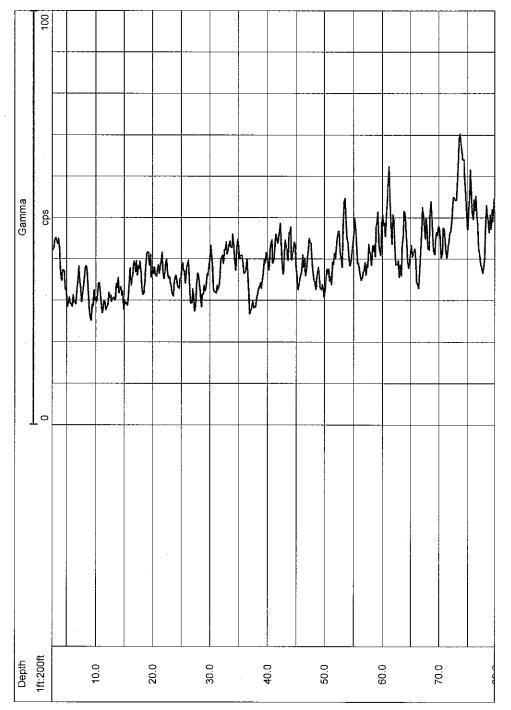
Gamma	cps 100																																			
	1ft:200ft 0			20		30		40		20				02		08		06		100		110		120					150				170			


- 75	\sim								
	Depth					Gamma	Ima		
	1ft:200ft	0				cbs	ŝ		100
				N.					
				h					
				M					
				M					
	500			₩,					
				W					
			M						
	1 1								
	210 -								
	· ·			h	Í				
			ļ	١.					
			ľ						
			ľ	4					
			M						
	220		ľ						
	1		ľ	1					
			V						
		-	ł						
	000			M					
	007		ſ	,					
			F	N					
					A				
			Y						
			Y						
			Y						
	- 747			h					
	r				•				
			h						
				j					
	250 7			V					
				Ĩ					

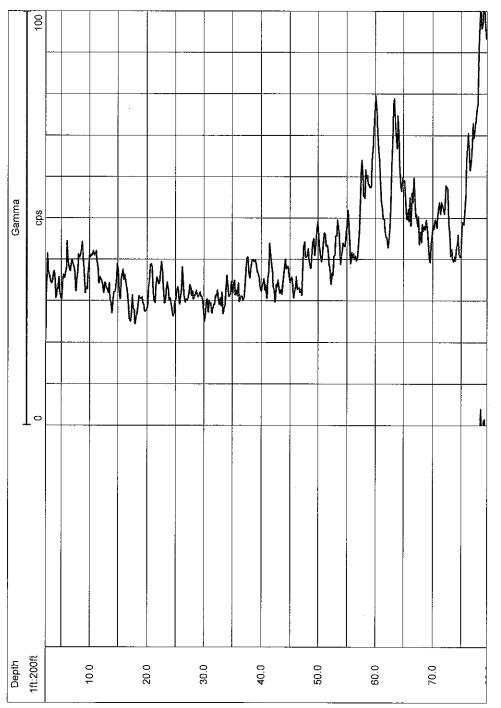
		Ą	1]		7	7						
2				co	MPANY	ł							
				WE	ELL ID								
U U U				FIE	LD								
Deel	4			CO	UNTRY	r				S	TATE		
401		d		LOC	ATION							OTHER	SERVICES
CO SCDHS WELL SL-4 240' Deep Gamma	FLD Crv Bridzohomaton	STE	FILING No	SEC			TWP		RG	E			
PERMA	NENT I	DATU	M					E	LEVATION	4		K.B.	
LOG MI DRILLI			ROM				A	BOVE P	ERM. DAT	UM		D.F. G.L.	
DATE					T				TYPE FLU	ID IN HOL	E		
RUN No	 D								SALIN				
TYPE L	.OG								DENSI'	ТҮ			
DEPTH	DRILL	ER							LEVEL	,			
DEPTH									MAX. REC	. TEMP.			
BTMLC					. .								
TOP LO OPERA				,			• •						
RECOR					<u> </u>								
WITNES													
RUN		EHOI	· · · ·	CORI		1.00			CASING R			,	
NO.	BIT		- ¹	ROM		ТО			SIZE	WGT.	FRO	VI	ТО

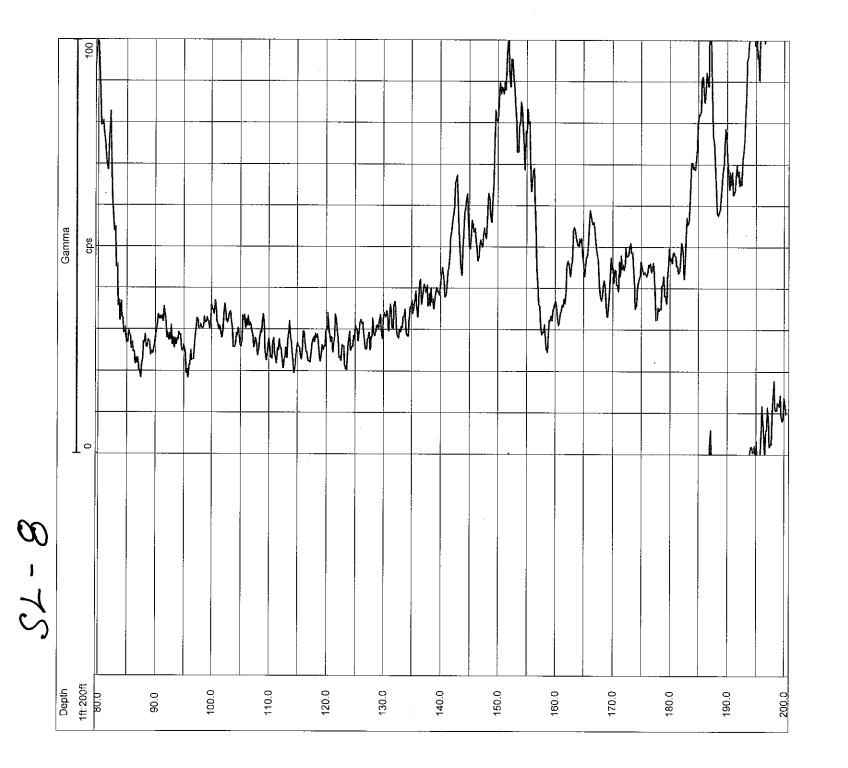


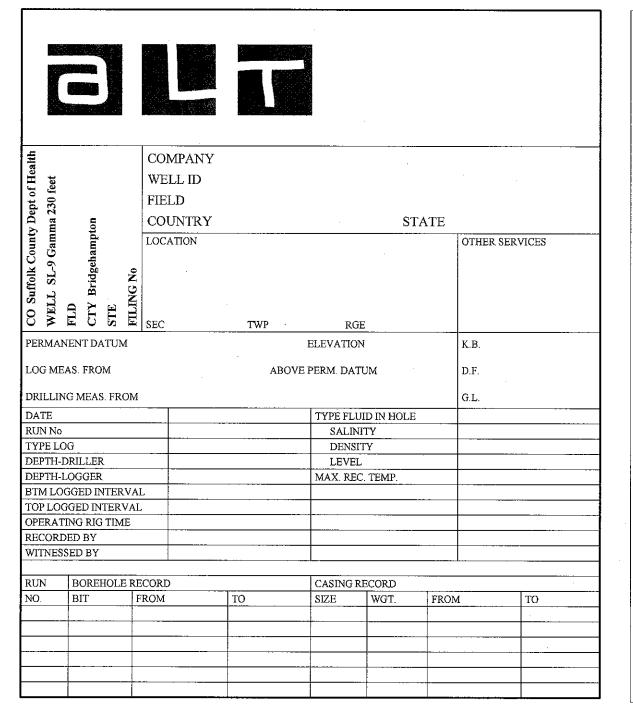
Gamma cps MMM..... M l∘, Depth 1ft:200ft au

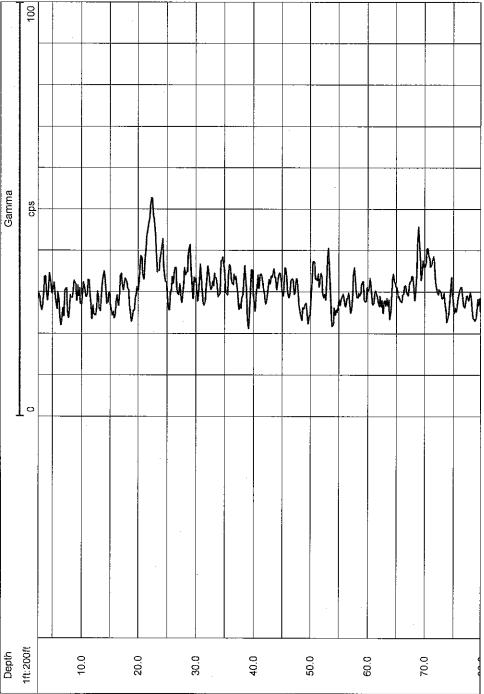

7-

	1	4		L'	Γ					
vices 1a			0	COMPANY					•	
Ser			Ĭ	WELL ID						
o Gs			F	FIELD						
' He Deel	6			COUNTRY			ST	TATE		
10']	որք		L	OCATION					OTHER S	SERVICES
CO Suffolk County Health Services WELL SL-6 210' Deep Gamma	FLD CTY Bridgehampton									
ME CO	FLD CTY	STE		EC	TWP	RC	3E			
PERMAN	IENT DA	ATUM	r			ELEVATIO)N		K.B.	
LOG ME	AS. FRO	M			ABO	VE PERM. DA	TUM		D.F.	
DRILLIN	IG MEAS	S. FROI	vī						G.L.	
DATE	•					TYPE FL	UID IN HOLE	r		
RUN No						SALD	NITY			
TYPE LC						DENS				
DEPTH-I DEPTH-I						LEVE				
BTM LO			AL.			MAX. RE	C. TEMP.		1	
TOP LOC									l	
OPERAT										
RECORD	ED BY									
WITNES	SED BY									
RUN	BORE	HOLE	RECO	ORD		CASING	RECORD			
NÖ.	BIT		FR(DM	то	SIZE	WGT.	FROM	1	то
					+					
									—	


lth			COMPAN	Y			•		
Неа			WELL ID						
t of Gan			FIELD						
Dep.			COUNTRY	v		ST	ΓΑΤΕ		
Ţ,	ptoi		LOCATION				IAIL	OTUED	SERVICES
CO Suffolk County Dept of Health WELL SL-7210' Deep Gamma	ELD CTY Bridgehampton STE	FILING No						- THE	
8 B	FLD CTY STE	Н	SEC	TWP	R	GE			
PERMA	NENT DATU	JM			ELEVATIO	ЛС		K.B.	
LOG M	EAS. FROM			ABC	VE PERM. DA	TUM		D.F.	
DRILLI	NG MEAS. FI	ROM						G.L.	
DATE					TYPE FI	UID IN HOLE	3		
RUN No						NITY			· · · · · ·
TYPE L					DENS				
	-DRILLER				LEVE				
	-LOGGER	'D \$7.6 T			MAX. RI	EC. TEMP.			
	OGGED INTE								
	TING RIG TI		·						
	DED BY								
	SSED BY		·····						
RUN	BOREHOI	EBE	COBD		CASDIC	RECORD			
NO.	BIT		ROM	TO	SIZE	WGT.	FROM		то
			·						
_									
	1								



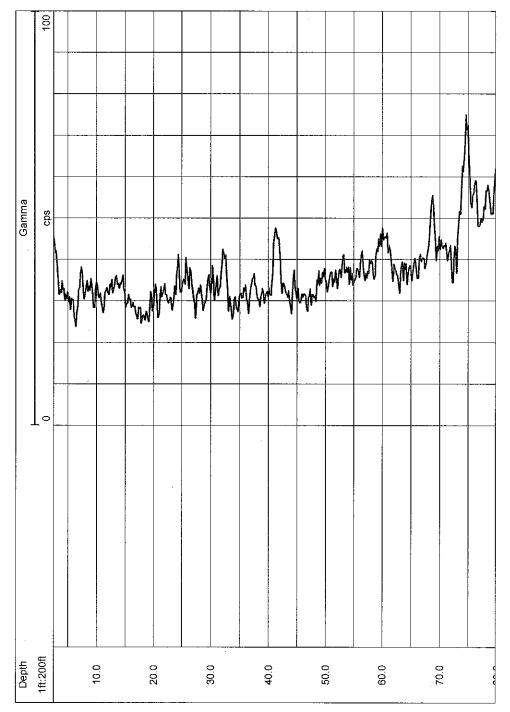

100 N.N.WWW V ĥ Gamma cbs ' My My r ļ \mathbb{A} M L∘⊧ N Depth 1ft:200ft 80.0 0.06 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0 190.0


-75

COMPANY CO Suffolk County Dept of Healt WELL SL-8 200' Deep Gamma WELL ID FIELD COUNTRY STATE Bridgehampton LOCATION OTHER SERVICES FILING No CTY FLD STE SEC TWP RGE PERMANENT DATUM ELEVATION K.B. LOG MEAS. FROM ABOVE PERM. DATUM D.F. DRILLING MEAS. FROM G.L. DATE TYPE FLUID IN HOLE RUN No SALINITY TYPE LOG DENSITY DEPTH-DRILLER LEVEL DEPTH-LOGGER MAX. REC. TEMP. BTM LOGGED INTERVAL TOP LOGGED INTERVAL OPERATING RIG TIME RECORDED BY WITNESSED BY RUN BOREHOLE RECORD CASING RECORD NO. BIT FROM TO SIZE WGT. FROM TO

100 Y\N 1 MAA Gamma cbs WWW WWW WWWWWWWWWWW ŴV. W ╢ VIII W 0 T Depth 1ft:200ft au.u 100.0 110.0 120.0 130.0 150.0 200.0 140.0 160.0 180.0 190.0 210.0 220.0 170.0 90.0 730

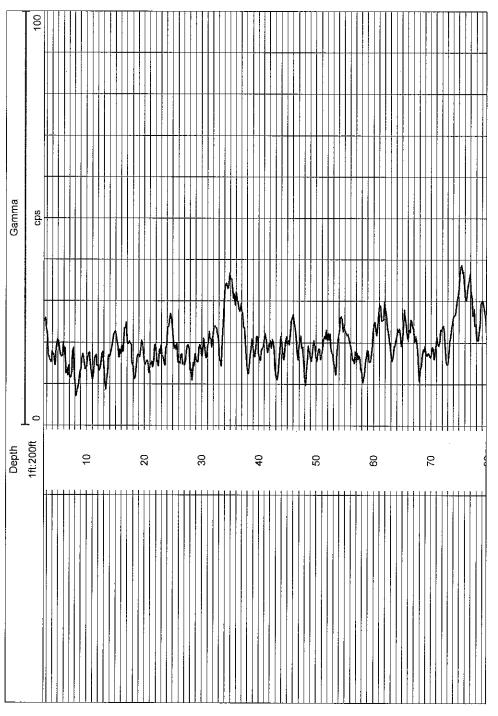
0

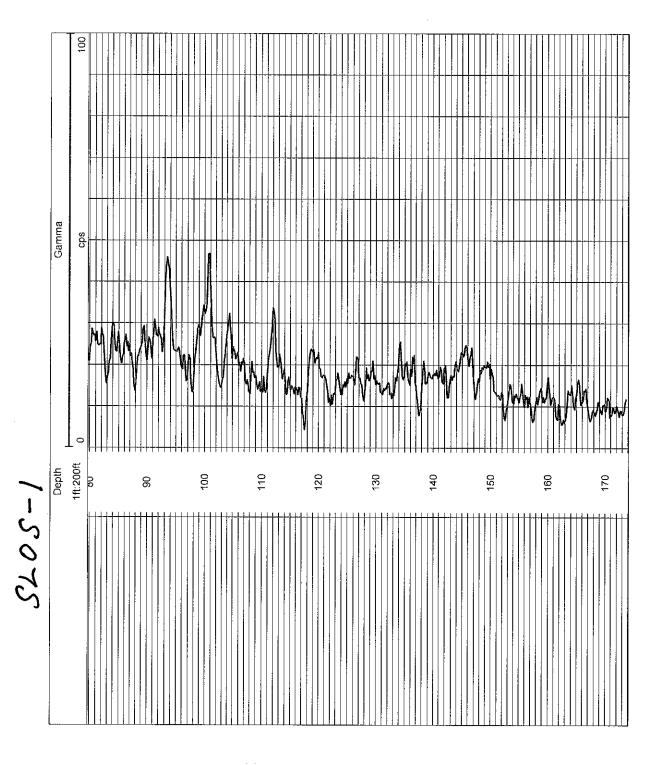

- 75

Ċ.

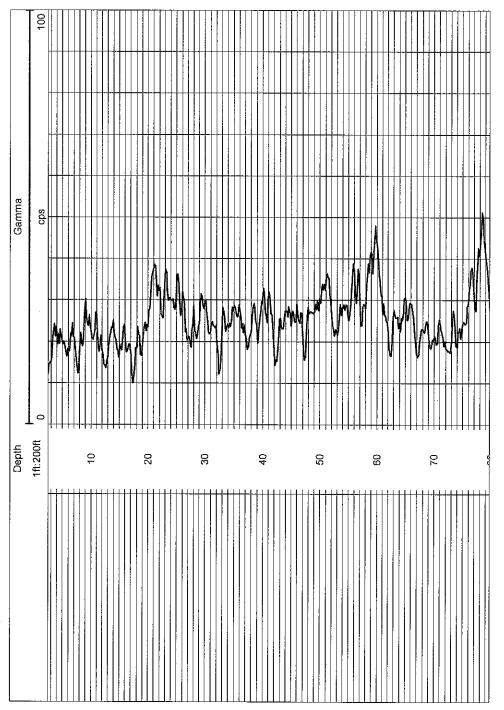
Page 2

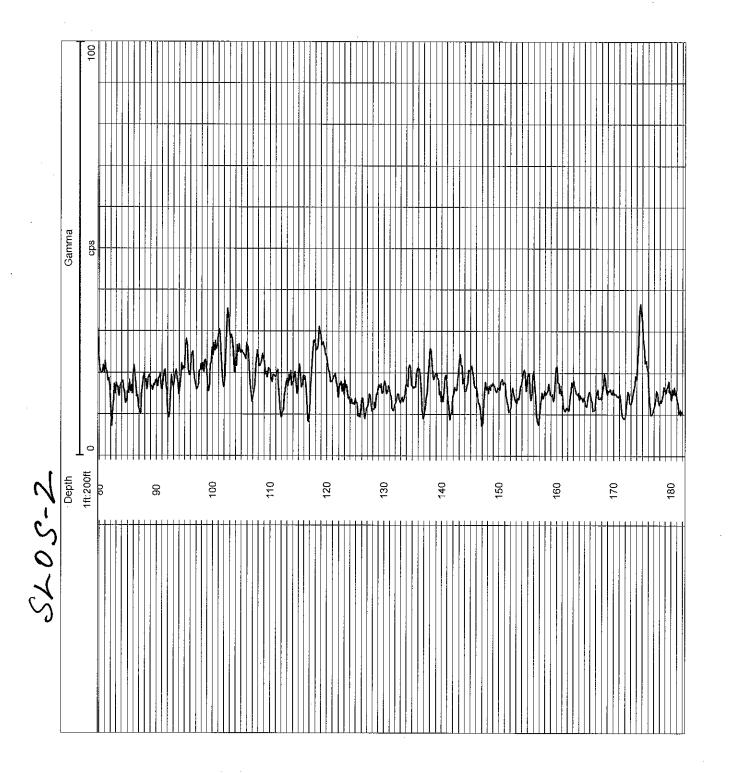
.


lth				• •	COl	MPAN'	r									
Hea eet					WE	LL ID				ъ.						
t of 10 f					FIE											
Depi 1a 2		-				JNTRY						നെം	TTT -			
uty J umb		ptor				ATION						STA		0.000		
CO Suffolk County Dept of Health WELL SL-10 Gamma 210 feet	0	CTY Bridgehampton	ы	FILING No										OTHER	JEKVIC	.50
S E	FLD	G	STE	EI	SEC			TWP		RGE	3					
PERMA	NEN	T DA	TUN	1					I	ELEVATION	1			K.B.		
LOG M DRILLI				DM				А	BOVE I	PERM. DAT	UM			D.F. G.L.		
DATE										TYPE FLU	ID IN HO	LE				
RUN No										SALINI						
TYPE L	~									DENSIT						
DEPTH										LEVEL						
DEPTH- BTM LO				37 4 1						MAX. REC	. TEMP.					
TOPLO								· ·								
OPERA																
RECOR											· .					
WITNE	SSED	BY													· · · ·	
DIDI	-1 12									al and a						
RUN NÖ.			1QLE	-	CORD					CASING R	T		(TRO)	r		<u></u>
NU.	BI	1		+	ROM		-	0		SIZE	WGT.		FRON	L	T(J
							·									

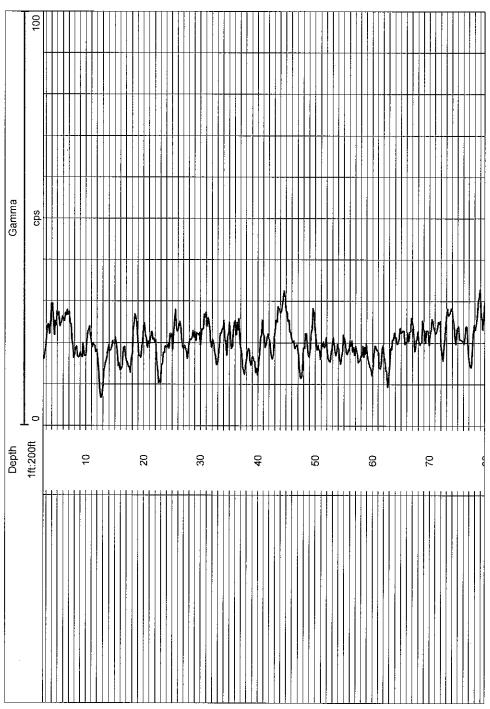


-


9 N 杊 MM Gamma cbs Ŵ V M W WWW WWW MΜ Mwh -J.M. Ж W HAL W L٥ - 10 \mathcal{S} Depth 1ft:200ft 80.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 180.0 190.0 200.0 90.0 170.0 210.0

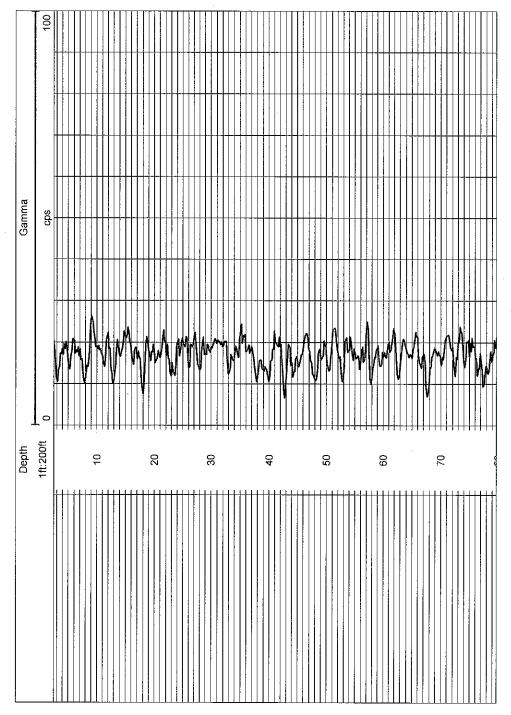

		1	4	1]		7	7							
						WE FIE	MPANY LL ID LD UNTRY					ST	ATE			
CO SCDHS WELL SLOS-1	FL.D	CTV Novack		STE Sand Land	FILING No	LOC.	ATION		TWP	F	RGE			OTHER	SERVICES	
PERMA										ELEVAT				K,B.		
LOG M DRILLI				-	iM				ABC)ve perm. D.	ATUM			D.F. G.L.		
DATE			Δ Ο. 1	1100	.1.1					TYDE F	LUID IN	HOLE	· · · · ·	G.L.		
RUN No	0			-							INITY	HOLE				
TYPE L											ISITY					
DEPTH			R							LEV						
DEPTH	-LO	GGE	R							MAX. R	EC. TEN	íP.		-		
BTM LO	OGC	ED I	INT	'ERV	/AL											
TOP LO)GG	ED I	NTI	ERV	AL											
OPERA				IME	3									ļ		
RECOR												-		ļ		
WITNE	SSE	D BJ	(l		· · · · · · · · · · · · · · · · · · ·
RUN	T	3OR1	- EHC)LF	RF	CORE)			CASING	RECOR					
NO.	_	BIT			r -	ROM	-	TO		SIZE	WG		FROM	м. Л	то	
					•											
					 											
					_			_								
	_				₋			<u> </u>								

		4	1]		Γ					
			:	CO	MPANY						
				WE	LL ID						
				FIE	LD						
				CO	UNTRY			SI	ГАТЕ		
		Ţ	2	LOC.	ATION					OTHER	SERVICES
CO SCDHS WELL SLOS-2	FLD CTV M1.	CLT NUYACK	FILING No								
				SEC		TWP		GE			
PERMA	NENT	DATI	UM				ELEVATI(ON		К.В.	
LOG M	EAS. FI	ROM				ABC	OVE PERM. DA	TUM		D.F.	
DRILLI	NG ME	AS. F	ROM							G.L.	
DATE							TYPE FL	UID IN HOLE	3		
RUN No							SALI	NITY			
TYPE L							DENS				
DEPTH							LEVE				
DEPTH- BTM LO			FRVAL				MAX. KI	EC. TEMP.			
TOPLO											
OPERA'	-										
RECOR	DED B	Y								-	
WITNES	SSED B	Y									······································
RUN	BOR	EHO	LERE	CORE)		CASING	RECORD			
NO.	BIT		· · ·	ROM		TO	SIZE	WGT.	FROM		ТО
	_			-					_		
			_		· · · · · · · · · · · · · · · · · · ·						
						+					



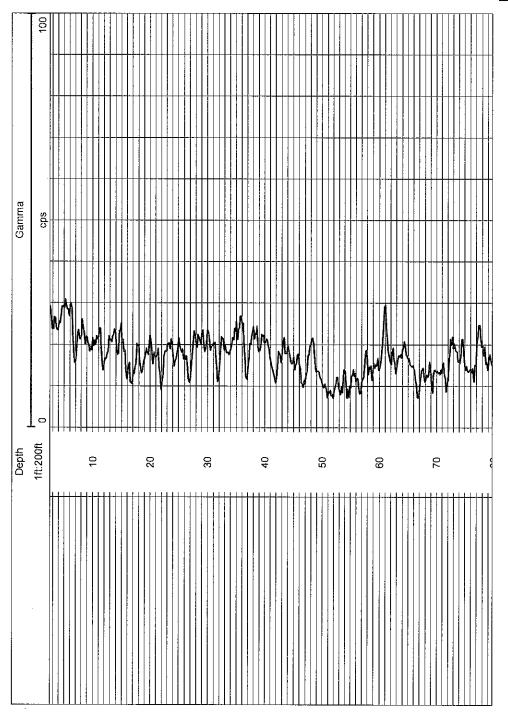
· · ·

Page 2

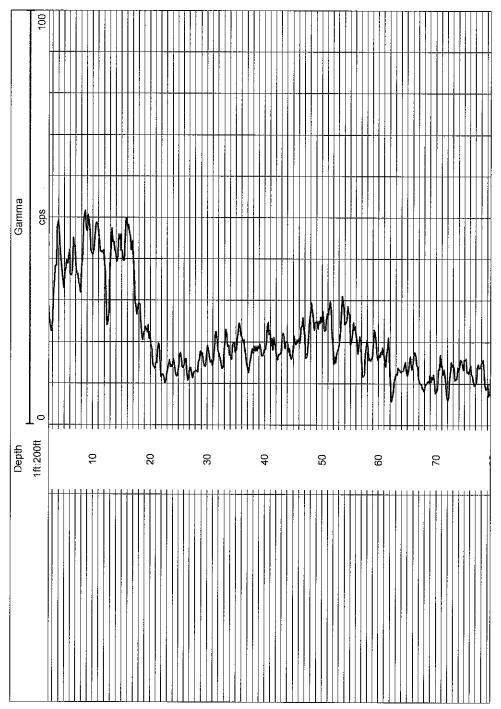

		1	4		1	[]	~							
	÷					MPANY								
						LL ID								
					FIEI	LD .								
					COI	JNTRY		STATE						
CO SCDHS	WELL SLOS-3	FLD CTY Noyack	STE Sand Land	FILING No	LOCA	ATION					-	OTHER	SERVICES	
0	\$	Eυ	Ň	Ξ	SEC		TWP		RGI	E				
PERI	MAN	ENT D	ATUN	Л				ELEV	ATION	1		K.B .		
LOG	ME	AS. FRO	DM				AF	BOVE PERM	. DAT	UM		D.F.		
DRII	LIN	G MEA	S. FR	ОМ								G.L.		
DATE								TYPE FLUID IN HOLE						
RUN No								DENSITY						
TYPE LOG DEPTH-DRILLER									EVEL					
DEPTH-LOGGER									MAX, REC. TEMP.					
BTM LOGGED INTERVAL														
TOP	LOG	GED IN	TER	VAL								•		
OPEJ	RAT	ING RIO	G TIM	ſE										
		ED BY												
WITI	NESS	SED BY	,											
RUN		BORE	HOL	E RE	CORD			CAS	ING R	ECORD				
NO.		BIT F			ROM		то	SIZH		WGT.	FROM	A	ТО	
				+										
				+						+				
		l		1.		1				1	1		1	

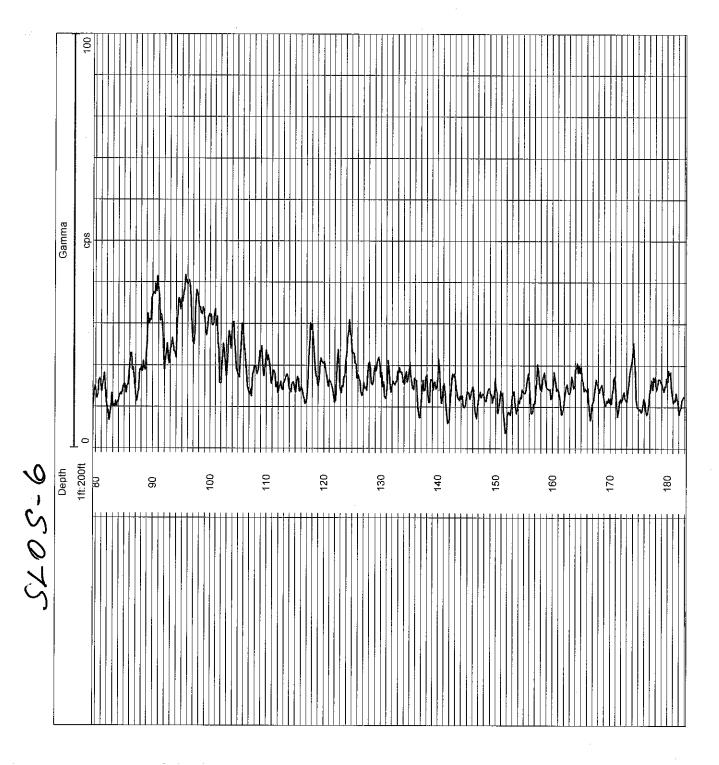
.

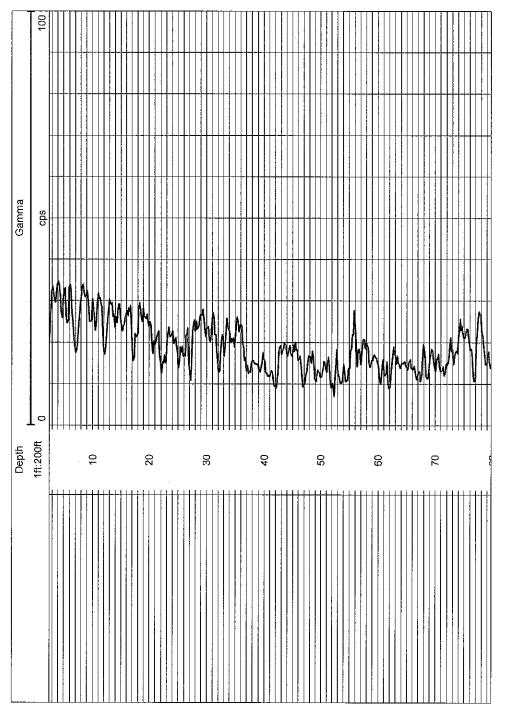
		100																								<u>.</u>		-					_							-					
																																											-		
	Gamma	cps									-								-																										-
				Ň		W	W	M			V		V			٩Ą		/		- 6																									-
		0																			-	W													W	N	V			^	J	M			-
M	Depth	1ft:200ft	8	+++	╂┼	8	8	++	++-	╞┼┥	++ 19	++	₽∔-	ŧ	-	 -+-	-+-	++	2 	+-	-+-+	++	++ 130	++	++	++	╂╊	++ 140	! ++	++	++	! +	± 150	11	╏╴╎╌		160	 	 ┨╍┠╍	₽┦	170 170	++	┼╃	\pm 180	
-5075																																													


		6	4		L	T					
					COMPAN	ſΥ					
					WELL ID						
					FIELD						
					COUNTR	Y		S	ГАТЕ		
CO SCDHS WELL SLOS-4	FLD	CTY Noyack	STE Sand Land	FILING No	LOCATION					OTHER	SERVICES
					SEC	TWP	R	GE			
PERMA	NENI	⁻ DA	TUN	4			ELEVATIO	N		К.В.	
LOGMI	EAS. F	RO	М			AB	OVE PERM. DA	TUM		D.F.	
DRILLII	NG M	EAS	. FR	MC						G.L.	
DATE							TYPE FL	UID IN HOLE	3		······································
RUN No							SALR				
TYPE LO DEPTH-							DENS LEVE				
DEPTH-								C. TEMP.			
BTM LC			TER	VAL						1	
TOP LO											
OPERA			TIM	Е					·		
RECORJ WITNES											
TT 1 1 1 1 LA	. עעניי				<u> </u>		l			1	
RUN	BO	REF	IOLE	E RE	CORD		CASING	RECORD			
NO.	BIJ			F	ROM	TO	SIZE	WGT.	FROM	M	ТО
				T							
					•						l

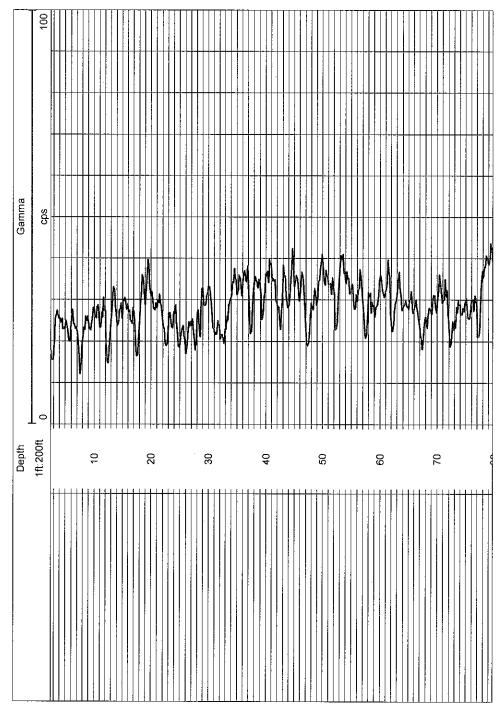
2 Gamma S Tol ╶┠┋╉┽┊╏┼┫┨┥╴ Depth 1ft:200ft øu 100 110 120 130 140 150 160 170 8 180 7 -5075


Ц Ц


	1	4			Γ					
			1	MPANY		·				
			WE	ELL ID						
			FIE	LD						
			CO	UNTRY			S	ΓΑΤΕ		
CO SCDHS WELL SLOS-5	FLD CTY Noyack	STE Sand Land		ATION					OTHER S	SERVICES
δ Ξ	12 D	IS	E SEC		TWP	R	3E			
PERMA	NENT D	ATUM				ELEVATIO	N		K.B.	
LOG MI	EAS. FRO	M			ABO	VE PERM. DA	TUM		D.F.	
DRILLII	NG MEA	S. FRO	М						G.L.	
DATE						TYPE FL	UID IN HOLE	3		
RUN No						SALI				
TYPE LO	UG DRILLEI					DENS				
	LOGGEF			<u>. </u>			C. TEMP.			
BTM LC	GGED II	NTERV	'AL							
	GGED IN									
	FING RIC	F TIME								
	DED BY SED BY								<u> </u>	
				1					1	
RUN	BORE	HOLE	RECORI)		CASING	RECORD			
NO.	BIT		FROM		то	SIZE	WGT.	FROM	4	ТО
								_		
	+									
	-									

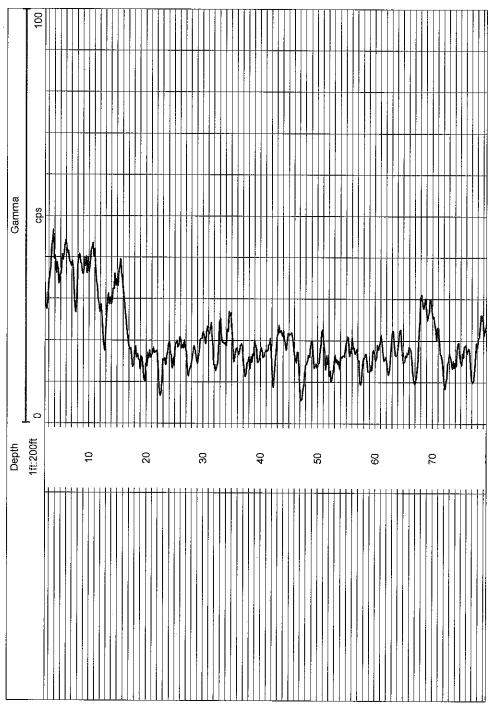

	100									:																																								T			-		
												+									-						-	-											-		-		-			_									
													╟					_								-													-						_										
																										-		-	-				+								-									Ì					
Gamma	cbs									_		-																ļ						-																-					
				n						 -														•								 								ſ										-					
			N		J	M	N	M	-	Ņ	A								M												-					-																			
		N,					V				 		V	N		M	M	N			M	Ņ		h	Λ	I				M	1	1	M		Ń	M	 	ľ	V	٩	n	A	þ	N	A	ŀ	4		A	Ą	N	M	V	Ŵ	1
<u>.</u>	0									-+-+	+														-									T		İ						ľ		•				V				[
·] [_	Ŧ																																			150																			
Depth	1ft:200ft	90				8				100					2					120	77				130						140					4					001	201					170							180	2

A	L'	Γ					
	COMPANY						
	WELL ID						
	FIELD						
	COUNTRY			SI	ΓΑΤΕ		
CO SCDHS WELL SLOS-6 FLD CTY Noyack STE Sand Land FTLNG No	LOCATION					OTHER SE	RVICES
<u> </u>	SEC	TWP	RC	ЭЕ	····		
PERMANENT DATUM			ELEVATIC	N		KB.	
LOG MEAS. FROM		ABO	ve perm. Da'	TUM		D.F.	
DRILLING MEAS. FROM	1					G.L.	
DATE				UID IN HOLE	3		
RUN No TYPE LOG			SALIN DENS				
DEPTH-DRILLER			LEVE				
DEPTH-LOGGER			MAX. RE				
BTM LOGGED INTERV							
TOP LOGGED INTERVA OPERATING RIG TIME							
RECORDED BY							· · · · · · · · · · · · · · · · · · ·
WITNESSED BY		· · · · · · · · · · · · · · · · · · ·				· · · · ·	
RUN BOREHOLE R	ECORD		CASING	RECORD			
NO. – BIT	FROM	TO	SIZE	WGT.	FROM	[ТО
					-		
1							

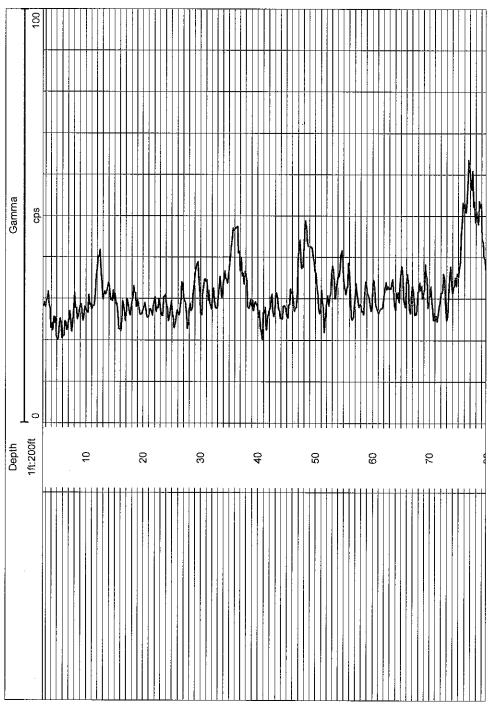


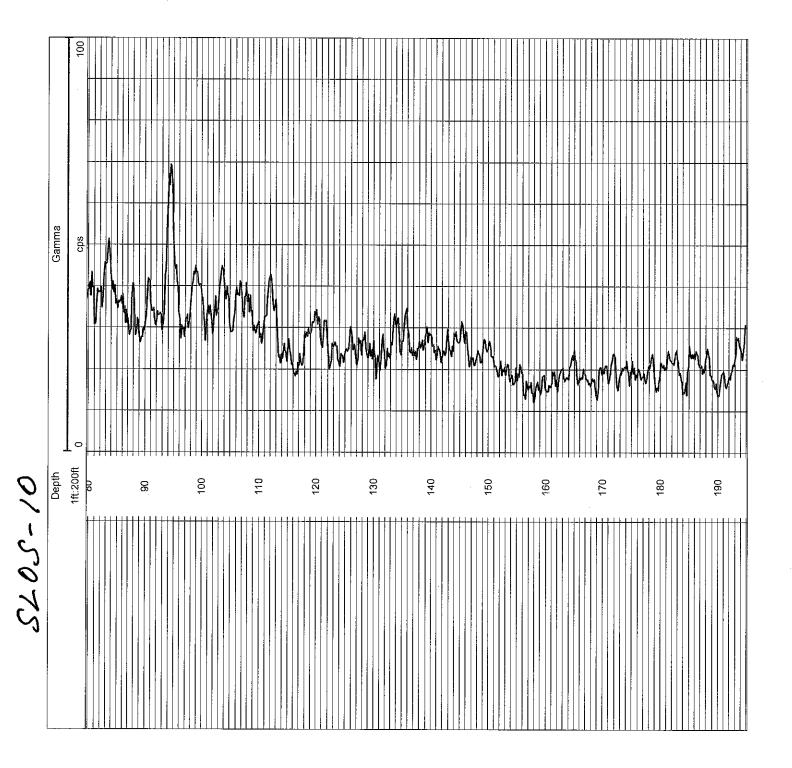
	A	1	L'	Τ				
			COMPANY					
			WELL ID					
			FIELD					
			COUNTRY			S	TATE	
CO SCDHS WELL SLOS-7	FLD CTY Noyack STE Sand Land	FILING No	LOCATION	TWP	R	Æ	0	THER SERVICES
PERMAN	ENT DATU				ELEVATIO)N	К	.B.
LOGME	AS. FROM			197	VE PERM. DA	TTIM		.F.
				ADC	VETERM. DA	TOM		
	G MEAS. FI	ROM	· · · · · · · · · · · · · · · · · · ·		1			L
DATE RUN No					TYPE FL SALR	UID IN HOLE		
TYPE LOO	G				DENS			
DEPTH-D	RILLER				LEVE	L		
DEPTH-L					MAX. RE	C. TEMP.		
	GED INTE							
	GED INTER NG RIG TIÌ							
RECORDI		111						······································
WITNESS	ED BY							
RUN	BOREHOI	ERF	CORD		CASING	RECORD		
NO.	BIT		ROM	TÖ	SIZE	WGT.	FROM	ТО
		+						

		100																													•				
				1.																															
					••••																														
	Ima	ŝ																																	
	Gamma	cbs																																	
					A																														
					/	I	Ą,	h						٨.		n	A																		
		ļ	$\mathbb{V}^{\mathbb{N}}$							$\langle \rangle$	N	M	Ŋ	V	V			M	M	Ņ	A	M	.	M	N	٨		W				A	ľ	Ń	
									V													¥ 1	Υ Π ΑΛ		V	V.					V				
	Depth	1ft:200ft 80	, , , , , ,		DB			• • •	,	110			, , ,				130	 		140	• • • •		150				B				120				1 1
		₹ 						+++							╊╋╋			++++	- - 										- 	++	++				H
270																																			
っ																																			
																							111												1


	L	1	L'	Γ					
			COMPANY WELL ID FIELD						
			COUNTRY			S	ГАТЕ		
CO SCDHS WELL SLOS-8	FLD CTY Noyack	STE Sand Land FILING No	LOCATION					OTHER SI	ERVICES
ŭ ≥	E 5 8		SEC	TWP	R	GE			
PERMA	NENT DAT	UM			ELEVATIO	N		K.B.	
LOG MI	EAS. FROM	[AB	OVE PERM. DA	TUM		D.F.	
DRILLI	NG MEAS.	FROM						G.L.	
DATE					TYPE FL	UID IN HOLE			
RUN No)				SALN				
IYPE L					DENS				
	-DRILLER				LEVE				
	-LOGGER DGGED INT	FRVA			MAX, RE	C. TEMP.			
	GGED INT								
	TING RIG T								
RECOR	DED BY								
	SSED BY								
WITNE					CASING	RECORD			
	BOREHO	DLE RE	CORD		CUDINO				
RUN	BOREHO		CORD ROM	то	SIZE	WGT.	FROM	1	TO
RUN				ТО			FROM	1	ТО
RUN				то			FROM	1	TO
WITNE: RUN NO.				TO			FROM	1	TO
RUN				TO			FROM	1	TO

Depth 11: 200ft 0 10 90 90 100 90 90 110 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 130 90 90 140 90 90 150 90 90 150 90 90 150 90 90 150 90 90 150 90 90 150 90 90 150 90 90 170 90 90 170 90 90 170 90 90 170
· <mark>┣┼┟┼┼┼┼┽╉╋╉╅╜┊┊┼╽┊┇┼┠┼┽┽╋┊╋╠┇╎╎╽┊╎╎┝╄╅╅┽┊┦┿┪┫╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎╎</mark>


Ć


	1	4]	LT						
			CO	MPANY						
			WE	ELL ID						
			FIE	LD						
			CO	UNTRY			S	TATE		
		p	LOC	ATION					OTHER	SERVICES
CO SCDHS WELL SLOS-9 HID	Y Noyack	E Sand Lan								
S & E	C E	LS	SEC		TWP	RC	3E			
PERMANE	NT DA	TUM				ELEVATIO	N		K.B.	
LOG MEA	S. FRO	М			ABC	VE PERM. DA'	TUM		D.F.	
DRILLING	MEAS	. FROI	M						G.L.	
DATE						TYPE FL	UID IN HOLI	3		
RUN No						SALD				
TYPE LOG DEPTH-DF					· · · · · · · · · · · · · · · · · · ·	DENS	· · · · · ·			· · · · · · · · · · · · · · · · · · ·
DEPTH-DF						LEVE	C. TEMP.			
BTM LOG			AL.				C. I EIVIF.			
TOP LOGO										· · · ·
OPERATIN	IG RIG	TIME								· · · · · · · · · · · · · · · · · · ·
RECORDE	DBY									
WITNESSE	DBY									
DIDI	יידת סם		TCOPT			0.000.00	DEGODD			
· · · · ·	BIT	JULE I	RECORI		0	CASING I SIZE	WGT.	FROM	Á	TO
110,			I ICOIVI	<u>+</u>				FROM	<u> </u>	
· ·										
										· · · · ·
									·	

		100																																										Ī			T	Γ									
													-																																												
																																																	_								
	Gamma	cps																-																					-																		
	Ga						A																		-																					-											
																A				-						-						-1	 -																			-					
			h					۳ ,		Ì		ļ	N			V	M	4		И	Y			1					l ,						A																						
						<u> </u>			U													Ŋ	~			₩	V			V	¥			ľ		J	Ŵ	h		1	¢	Ą	1			Ń	N		W	N	V	Ą	I	¥,	Ŵ	4	
		_ 0																						-												¥				-			V		V										+		
0	Depth	1ft:200ft	00		00	90					100				410	2			120	120			120	22					140					150	001						160						710	N/L							180	· ·	
-5075																																																									

	1	4	Ľ	T				
			COMPAN	Y				
			WELL ID					
			FIELD					
			COUNTRY	7		S	ГАТЕ	
CO SCDHS WELL SLOS-10	FLD CTY Noyack	STE Sand Land FILING No	LOCATION				OTHER	SERVICES
			SEC	TWP		GE		
PERMA	NENT DA	TUM			ELEVATIO	DN	K.B.	
LOG MI	EAS. FROM	М		AB	OVE PERM. DA	TUM	D.F.	
DRILLI	NG MEAS	FROM					G.L.	
DATE					TYPE FL	UID IN HOLE	Ξ	
RUN No					SALI			
TYPE L					DENS			
	DRILLER			· · · · · · · · · · · · · · · · · · ·	LEVE	EC. TEMP,		
	GGED IN	TERVA	L .			AC. TEMIT,		
TOP LO	GGED IN	ERVAL	,					
	FING RIG	TIME						
	DED BY							
WIINE	SSED BY							·····
RUN	BOREH	OLE RE	CORD		CASING	RECORD		
NO.	BIT		ROM	ТО	SIZE	WGT.	FROM	ТО

APPENDIX

С

Water Sampling Analyte Groups and Analytes

Carbamate Pesticides

(SM21 6610B) Aldicarb Sulfone ug/l Aldicarb Sulfoxide ug/l Aldicarb ug/l Carbofuran ug/l 3-HYDROXY CARBO ug/l OXAMYL ug/l CARBARYL ug/l 1-Naphthol ug/l METHOMYL ug/l PROPOXUR ug/l METHIOCARB ug/l METHIOCARB SULFONE ug/l

Chlorinated Pesticides

(EPA Method 505) Alpha - BHC ug/I Beta - BHC ug/l Gamma - BHC ug/l Delta - BHC ug/l Heptachlor ug/l Chlordane ug/l Alachlor ug/l Methoxychlor ug/l Endosulfan II ug/I Endosulfan Sulfate ug/l 4,4 DDD ug/l 4,4 DDE ug/l 4,4 DDT ug/l Endrin ug/l Heptachlor Epoxide ug/l Aldrin ug/l Dieldrin ug/l Endosulfan I ug/I Dacthal ug/l

Mircoextractables (EPA Method 504.1)

1,2-Dibromomethane ug/l 1,2-Dibromo-3-chloropropane ug/l

Dachtal

(HPLC/LC-GC/MS method developed at the SC PEHL)

Monomethyltetrachloroterephthalate ug/l Tetrachloroterephthalic acid ug/l

Metals

(EPA Method 200.8) Lithium ug/l Beryllium ug/l Aluminum ug/l Titanium ug/l Vanadium ug/I Chromium ug/I Manganese ug/l Cobalt ug/l Nickel ug/l Copper ug/l Zinc ug/l Germanium ug/l Arsenic ug/l Selenium ug/l Strontium ug/I Molybdenum ug/l Silver ug/l Cadmium ug/l Tin ug/l Antimony ug/l Tellurium ug/l Barium ug/l Mercury ug/l Thallium ug/I Lead ug/l Thorium ug/I Uranium ug/I

Metals

(EPA Method 200.7) Calcium mg/l Iron (Ferric) mg/l Potassium mg/l Magnesium mg/l Sodium mg/l

1,4,Dixoxane (EPA Method 522) 1,4-Dioxane ug/l

Note: mg/l = miligrams per liter, ug/l = micrograms per liter, ng/l = nanograms per liter, pCi/l = picocuries per liter

Herbicide Metabolites

(LC/MS/MS Method developed at SCDHS PEHL) G-28273 ug/l G-28279 ug/l

G-30033 ug/l Imidacloprid ug/I Imidacloprid Urea ug/I Alachlor OA ug/l Alachlor ESA ug/l CGA-37735 ug/l CGA-51202 ug/l CGA-354743 ug/l CGA-41638 ug/l CGA-40172 ug/l CGA-67125 ug/l G-34048 ug/l Malaoxon ug/l Trichlorfon ug/l Siduron ug/l Dichlorvos ug/l Propamocarb hydrochloride ug/l 2,6-Dichlorobenzamide ug/I Ibuprofen ug/I Gemfibrozil ug/l Metalaxyl ug/l Metolachlor ug/l Tebuthiuron ug/l Caffeine ug/l Dinoseb ug/l Bisphenol A ug/l Diuron ug/l Phenytoin (Dilantin) ug/l 4-Hydroxyphenytoin ug/l Diethyltoluamide (DEET) ug/l Acetaminophen ug/l Bisphenol B ug/l Estrone ug/l 17 alpha Ethynylestradiol ug/l Diethylstilbestrol ug/l 17 beta Estradiol ug/l 4-Androstene-3,17-dione ug/l Picaridin ug/l Propachlor ESA ug/l Propachlor OA ug/l Testosterone ug/l Equilin ug/l Estriol ug/l

Standard Inorganics (EPA Method 300)

Chloride mg/l Sulfate mg/l SO4 Ammonia (not distilled) mg/l N Nitrite mg/l N Nitrate mg/l N Bromide mg/l Ortho-Phosphate mg/l P Fluoride mg/l Chlorate mg/l

Radiologicals EPA Method 900.0 Gross Alpha pCi/l Gross Beta pCi/l Tritium pCi/l

Hexavalent Chromium (EPA Method 218.7) Hexavalent Chromium ug/l

MBAS (SM 5540C) MBAS (Low Sensitivity) ug/l

Perchlorate (EPA Method 332.0) Perchlorate ug/l

Chlorinated Acids (EPA Method 555) Acifluorfen ug/l Bentazon ug/l Chloramben ug/l 2,4-D ug/l Dicamba ug/l Dichloroprop ug/l Picloram ug/l 2,4,5-TP (Silvex) ug/l 2,4-DB ug/l 3.5-Diclorobenzoic Acid ug/I 4-Nitrophenol ug/l Dinoseb ug/l MCPA ug/l MCPP ug/l Pentachlorophenol ug/l 2.4.5-T ua/l

Note: mg/l = miligrams per liter, ug/l = micrograms per liter, ng/l = nanograms per liter, pCi/l = picocuries per liter

Volatile Organic Compounds (EPA Method 524.2)

Chlorodifluoromethane ug/l Bromodichloromethane ug/l 2,3-Dichloropropene ug/l cis-1,3-Dichloropropene ug/l 1,2-Dichlorobenzene (o) ug/l 1,3-Dichlorobenzene (m) ug/l 1,4-Dichlorobenzene (p) ug/l 1,1,1,2-Tetrachloroethane ug/l 1,2,3-Trichloropropane ug/l 2,2-Dichloropropane ug/l 1,3-Dichloropropane ug/l Bromochloromethane ug/l n-Propylbenzene ug/l 1-Bromo-2-chloroethane ug/l 1,2-Dichloropropane ug/l Trichloroethene ug/l Naphthalene ug/l Hexachlorobutadiene ug/l Methyl-tertiary-butyl-ether ug/l Tetrachloroethene ug/l cis-1,2-Dichloroethene ug/L 2-Chlorotoluene ug/l Bromobenzene ug/l 2-Butanone (MEK) ug/l Tetrahydrofuran ug/l Ethylmethacrylate ug/l Propanal ug/l Carbon disulfide ug/l 1,1-Dichloroethene ug/l 1,3,5-Trimethylbenzene ug/l 1,2,4-Trimethylbenzene ug/l Chloromethane ug/l Trichlorofluoromethane ug/l Vinyl chloride ug/l p-Diethylbenzene ug/l 1,2,4,5-Tetramethylbenzene ug/l 1,2,4-Trichlorobenzene ug/l 1,2,3-Trichlorobenzene ug/l Ethenylbenzene (Styrene) ug/l Isopropylbenzene ug/l Carbon tetrachloride ug/l Benzene ug/l

Toluene ug/l Chlorobenzene ug/l Chlorodibromomethane ug/l 2-Bromo-1-chloropropane ug/l Bromoform ug/I Total Xylene ug/l Methyl sulfide ug/l Dimethyldisulfide ug/l 1,1-Dichloropropene ug/l Methyl isothiocyanate ug/l Acrylonitrile ug/l Methacrylonitrile ug/l Isobutane ug/l Allyl chloride ug/l Dichlorodifluoromethane ug/l Chloroethane ug/l Bromomethane ug/l trans-1,3-Dichloropropene ug/l 1,1,2-Trichloroethane ug/l 1,1,1,2-Tetrachloroethane ug/l Methylene chloride ug/l 1,1-Dichloroethane ug/l trans-1,2-Dichloroethene ug/l Chloroform ug/l 1,2-Dichloroethane ug/l 1,1,1-Trichloroethane ug/l tert-Butylbenzene ug/l sec-Butylbenzene ug/l p-Isopropyltoluene ug/l n-Butylbenzene ug/l Ethylbenzene ug/l o-Xylene ug/l m.p-Xvlene ua/l 1,4-Dichlorobutane ug/l Freon 113 ug/l Dibromomethane ug/l 4-Chlorotoluene ug/l Diethyl ether ug/l Methylmethacrylate ug/l d-Limonene ug/l n-Butane ug/l

Perfluoroalkyl Substances (PFASs) (ISO 25101)

Perfluorobutanesulfonic acid (PFBS) ng/l Perfluorohexanesulfonic acid (PFHxS) ng/l Perfluoroheptanoic acid (PFHpA) ng/l Perfluorooctanoic acid (PFOA) ng/L Perfluorooctanesulfonic acid (PFOS) ng/L Perfluorononanoic acid (PFNA) ng/L

Note: mg/I = miligrams per liter, ug/I = micrograms per liter, ng/I = nanograms per liter, pCi/I = picocuries per liter

Semi-Volatiles (EPA Method 525.2)

1-Methylnaphthalene ug/l 2-Methylnaphthalene ug/l Acenaphthene ug/l Acenaphthylene ug/l Acetochlor ug/l Alachlor ug/l Allethrin ug/l Anthracene ug/l Atrazine ug/l Azoxystrobin ug/l Benfluralin ug/l Benzo(a)anthracene ug/l Benzo(b)fluoranthene ug/l Benzo(ghi)perylene ug/l Benzo(k)fluoranthene ug/l Benzo(a)pyrene ug/l Benzophenone ug/l Butyl benzyl phthalate ug/l bis(2-ethylhexyl) adipate ug/l bis(2-ethylhexyl) phthalate ug/l Bisphenol A ug/l Bloc ug/l Bromacil ug/l Butachlor ug/l Butylated Hydroxyanisole ug/l Butylated Hydroxytoluene ug/l Carbamazepine ug/l Carbazole ug/l Carisoprodol ug/l Chlordane ug/l Chlorofenvinphos ug/l Chloroxylenol ug/l Chlorpyriphos ug/l Chrysene ug/l Cyfluthrin ug/l Cypermethrin ug/I Dacthal ug/l Deltamethrin ug/l Dibenzo(a,h)anthracene ug/l Dibutyl phthalate ug/l Dichlobenil ug/l Dichlorvos ug/l

Dieldrin ug/l Diethyl phthalate ug/l Diethyltoluamide (DEET) ug/l Dimethyl phthalate ug/l Dioctyl phthalate ug/l Disulfoton sulfone ug/I Endosulfan Sulfate ug/l EPTC ug/l Ethofumesate ug/l Ethyl parathion ug/l Fluoranthene ug/l Fluorene ug/l Hexachlorobenzene ug/l Hexachlorocyclopentadiene ug/l Hexachloroethane ug/l Hexazinone ug/l Indeno(1,2,3-cd)pyrene ug/l lodofenphos ug/l Iprodione ug/l Isofenphos ug/I Kelthane ug/l Malathion ug/l Metalaxyl ug/l Methoprene ug/l Methoxychlor ug/l Methyl parathion ug/l Naled (Dibrom) ug/l Napropamide ug/l Pendimethalin ug/l Pentachlorobenzene ug/I Pentachloronitrobenzene ug/l Permethrin ug/l Phenanthrene ug/l Piperonyl butoxide ug/l Prometon ug/l Prometryne ug/l Propachlor ug/l Propiconazole (TILT) ug/l Pyrene ug/l Resmethrin ug/l Ronstar ug/l Simazine ug/l

Sumithrin ug/l Tebuthiuron ug/l Terbacil ug/l Triadimefon ug/l Triclosan ug/l Trifluralin ug/l Vinclozolin ug/l Etofenprox ug/l Etofenprox alpha-CO ug/l Prallethrin ug/l

Note: mg/I = miligrams per liter, ug/I = micrograms per liter, ng/I = nanograms per liter, pCi/I = picocuries per liter

APPENDIX

D

Summary of Detected Analytes 2015 Groundwater Samples

	Well Informa	ition			Pa	arameters															Metals											
Well ID	Screen Interval (ft) (depth below grade)	Sample Date	Depth To Water (feet below grade)	Turbidity (ntu)	Temperature C	Dissolved Oxygen (ppm)	Hď	Conductivity (uS)	ORP	Aluminum (ppb)	Arsenic (ppb)	Barium (ppb)	Beryllium (ppb)	Calcium (ppm)	Chromium (ppb)	Cobalt (ppb)	Iron (ppm)	Lead (ppb)	Lithium (ppb)	Magnesium (ppm)	Manganese (ppb)	Molybdenum (ppb)	Nickel (ppb)	Potassium (ppm)	Sodium (ppm)	Strontium (ppb)	Thorium (ppb)	Titanium (ppb)	Uranium (ppb)	Vanadium (ppb)	Zinc (ppb)	Hexavalent Chromium (ppb)
DEC T	OGS 1.1.1 Guid	dance Values	-	-	-	-	-	-	-	-		-		-	-	-	-		-	35	-	-	-	-	-	-		-			2,000	-
DEC Pa	rt 703 Class GA Standards		-	-	-	-	-	-	-	-	25	1,000		-	50	-	0.3	25	-	-	300	-	100	-	20	-		-			-	50
DOH	Drinking Water Subpart 5-		-	-	-	-	-	-	-	-	10	2,000		-	100	-	0.3	15***	-	-	300	-	100	-	-	-		-			5,000	100
	210 - 215	7/1/2015	207.2	2.78	18.3	4.62	6	188	237	115	<1	43	< 0.2	13	3.1	<1	0.22	<1	<1	6.9	15	1.6	2.8	1.3	11	74	<2	8.7	< 0.5	<1	<5	0.21
SL-1	220 - 225	7/1/2015	207.2	0.95	18.1	4.79	6.2	212	240	17	<1	41	< 0.2	16	1.5	<1	< 0.1	<1	<1	7.1	6.9	<1	1.5	1.1	9.8	84	<2	1.5	< 0.5	<1	<5	0.17
31-1	230 - 235	6/30/2015	207.4	3.72	20.2	4.54	5.9	225	NA	96	<1	59	< 0.2	17	7.8	<1	0.27	<1	1.7	5.3	13	1	4.9	0.89	13	87	<2	6.7	< 0.5	<1	<5	0.09
	240 - 235	6/10/2015	206.8	1.75	23.7	7.14	6.1	146	NA	13	<1	28	< 0.2	9.7	9	<1	< 0.1	<1	<1	4.4	6	1	6.1	0.8	10	61	<2	<1	< 0.5	<1	<5	0.27
	210 - 215	7/1/2015	204.2	1.52	18.7	4.92	6	239	298	9.2	<1	51	< 0.2	14	2.8	<1	< 0.1	<1	<1	5.5	7.7	<1	2.2	1.2	19	90	<2	<1	< 0.5	<1	5.9	0.12
SL-2	220 - 225	6/30/2015	204.4	NA	19.6	5.11	6.2	160	189	75	<1	36	< 0.2	8.7	4.5	<1	0.19	<1	<1	5.6	14	<1	2.9	0.79	11	63	<2	4.6	< 0.5	<1	<5	0.19
3L-2	230 - 235	6/30/2015	204.4	NA	19.8	6.18	6.5	144	195	111	<1	36	< 0.2	9.7	8.4	<1	0.32	<1	<1	4.2	19	1.1	5.2	0.94	10	55	<2	6.4	< 0.5	<1	<5	0.24
	240 - 245	6/30/2015	204.4	NA	17.7	7.07	6.5	73	248	7.5	<1	13	< 0.2	3.7	4	<1	< 0.1	<1	<1	1.6	2.6	<1	2.4	0.56	6.8	22	<2	<1	< 0.5	<1	<5	0.31
	210 - 215	7/7/2015	203.1	0.2	17.1	3.29	5.9	175	282	8.3	<1	60	< 0.2	9.1	1	<1	< 0.1	<1	<1	4.4	23	<1	1.9	2.1	15	68	<2	<1	< 0.5	<1	<5	0.14
SL-3	220 - 225	7/6/2015	202.9	0.66	17.9	6.78	6.1	128	267	7.2	<1	29	< 0.2	7.7	1.2	<1	< 0.1	<1	<1	2.9	3.3	<1	0.8	0.56	10	49	<2	<1	< 0.5	<1	<5	0.18
31-3	230 - 235	7/6/2015	202.9	2.1	17	8.81	6.5	110	245	94	<1	22	< 0.2	4.2	1.5	<1	0.16	<1	<1	2.8	13	<1	0.8	0.58	12	28	<2	5.2	< 0.5	<1	<5	0.23
	240 - 245	7/6/2015	202.9	0.05	18.4	8.17	6.6	82	247	<5	<1	15	< 0.2	4.2	2	<1	< 0.1	<1	<1	1.9	1.9	<1	1.1	<0.5	7.4	26	<2	<1	< 0.5	<1	<5	0.27
SL-4	230 - 235	7/7/2015	201.1	1.21	16.8	7.99	6.8	75	255	6.2	<1	10	< 0.2	4.5	1	<1	< 0.1	<1	<1	1.8	16	<1	0.9	0.61	6.3	25	<2	<1	< 0.5	<1	<5	0.31
SL-4S	200 - 205	8/12/2015	201	3.19	18.3	4.36	5.9	188	233	92	<1	55	< 0.2	16	1.6	4	0.16	<1	2.9	4.9	322	<1	7.8	1.1	13	85	<2	8.3	< 0.5	<1	7.2	0.16
31-43	210 - 215	8/12/2015	201	2.08	17.2	7.5	5.9	168	289	49	<1	33	<0.2	8.2	1.3	<1	<0.1	<1	1.1	4.3	8.6	<1	0.9	0.8	16	53	<2	3.2	< 0.5	<1	<5	0.2
	200 - 210	7/13/2015	199.6	3.38	16.9	1.21	5.6	153	205	96	<1	48	< 0.2	13	1.7	4.6	0.31	<1	3.1	4.8	228	<1	8.9	0.93	8.3	78	<2	7.4	< 0.5	<1	<5	< 0.03
	210 - 215	7/13/2015	199.6	0.07	16.5	6.29	6.3	141	249	<5	<1	28	<0.2	7.4	1.6	<1	<0.1	<1	<1	4.5	6.2	<1	1.1	0.79	12	47	<2	<1	< 0.5	<1	<5	0.22
SL-5	220 - 225	7/8/2015	199.3	0.37	17.4	7.13	6.8	181	208	6.6	<1	26	< 0.2	11	1.9	<1	<0.1	<1	<1	4.9	4.9	<1	1.3	0.81	14	59	<2	<1	< 0.5	<1	<5	0.21
02-0	230 - 235	7/8/2015	199.3	0.46	17.4	8.1	6.7	68	243	5.6	<1	11	< 0.2	3.8	1.7	<1	<0.1	<1	<1	1.3	8.6	<1	1.1	<0.5	6.9	23	<2	<1	< 0.5	<1	<5	0.35
	240 - 245	7/8/2015	199.3	0.4	16.2	8.15	6.9	89	233	<5	<1	10	< 0.2	4.9	2.3	<1	<0.1	<1	<1	2.1	4.1	<1	1.2	0.54	8.1	29	<2	<1	< 0.5	<1	<5	0.37
	250 - 255	7/7/2015	199.3	0.59	17.4	7.64	7	101	225	5.4	<1	14	< 0.2	5.9	1.9	<1	<0.1	<1	<1	2.7	1.7	<1	1	0.69	9.1	33	<2	<1	< 0.5	<1	<5	0.25
	170-175	11/30/2015	164.18	4.16	13.5	1.33	6.11	211.8	248	137	<1	97	<0.2	22.8	2	<1	0.32	<1	3	5.7	28	<1	3.1	1.6	9.5	116	<2	11	<0.5	<1	<5	NS
SL-6	180-185	11/30/2015	164.18	0.27	12.9	1.18	5.89	180.8	259	6	<1	77	<0.2	14.3	2	<1	<0.1	<1	2	5.7	19	<1	3.7	1.7	7.8	85	<2	<1	< 0.5	<1	<5	NS
	190-195	11/24/2015	163.58	1.08	13.6	1.76	5.96	168	166	12	<1	62	<0.2	10.5	2	<1	<0.1	<1	2	7.8	23	<1	3	1.2	7.2	71	<2	<1	<0.5	<1	<5	NS
	200-205	11/24/2015	163.53	0.84	13.9	1.92	5.77	168	167	5	<1	64	<0.2	10.1	<1	<1	<0.1	<1	2	7.5	33	<1	2.9	1.2	7.5	68	<2	<1	< 0.5	<1	<5	NS

	Well Informa	ation			Pa	arameters															Metals											
Well ID	Screen Interval (ft) (depth below grade)	Sample Date	Depth To Water (feet below grade)	Turbidity (ntu)	Temperature C	Dissolved Oxygen (ppm)	Hď	Conductivity (uS)	ORP	Aluminum (ppb)	Arsenic (ppb)	Barium (ppb)	Beryllium (ppb)	Calcium (ppm)	Chromium (ppb)	Cobalt (ppb)	Iron (ppm)	Lead (ppb)	Lithium (ppb)	Magnesium (ppm)	Manganese (ppb)	Molybdenum (ppb)	Nickel (ppb)	Potassium (ppm)	Sodium (ppm)	Strontium (ppb)	Thorium (ppb)	Titanium (ppb)	Uranium (ppb)	Vanadium (ppb)	Zinc (ppb)	Hexavalent Chromium (ppb)
DEC T	OGS 1.1.1 Gui	dance Values	-	-	-	-	-	-	-	-		-		-	-	-	-		-	35	-	-	-	-	-	-		-			2,000	-
DEC Par	rt 703 Class GA Standard	A Groundwater Is	-	-	-	-	-	-	-	-	25	1,000		-	50	-	0.3	25	-	-	300	-	100	-	20	-		-			-	50
DOH	Drinking Wate Subpart 5		-	-	-	-	-	-	-	-	10	2,000		-	100	-	0.3	15***	-	-	300	-	100	-	-	-		-			5,000	100
	160-165	11/23/2015	157.1	4.69	13.2	5.88	6.82	213	NA	131	<1	59	< 0.2	24.3	2	<1	0.25	<1	2	7.2	378	<1	7.1	1.9	9.7	121	<2	7	< 0.5	<1	<5	NS
	170-175	11/23/2015	157.1	4.55	12.9	5.24	6.45	236	93	292	<1	65	< 0.2	29	3	1	0.55	<1	2	7.6	114	<1	4.3	1.7	9.7	135	<2	15	< 0.5	<1	<5	NS
SL-7	180-185	11/19/2015	156.5	2	14.3	5.07	6.38	239	130	69	<1	69	< 0.2	28.3	2	<1	0.15	<1	1	8.7	55	<1	2.8	1.4	9.8	127	<2	4	< 0.5	<1	<5	NS
	190-195	11/18/2015	157.08	2.15	14.4	4.1	6.35	243	128	34	<1	53	<0.2	20.4	1	<1	<0.1	<1	<1	12.6	112	<1	1.3	1.4	8.1	121	<2	2	< 0.5	<1	<5	NS
	200-205	11/18/2015	156.53	2.51	14	3.14	6.52	242	108	100	<1	53	<0.2	20.1	2	<1	0.19	<1	<1	16.7	66	<1	3	1.5	8.9	115	<2	6	< 0.5	<1	<5	NS
	110-115	11/17/2015	103.12	54	15.8	6.6	6.72	109	62	4385	2	66	0.3	7.2	8	4	7.13	3	7	5.2	608	<1	8.2	2.7	10	41	<2	207	0.5	9	18	NS
	120-125	11/16/2015	102.9	7.58	16.4	7.58	6.43	83	80	4035	2	53	0.3	4.1	7	4	6.68	3	7	4.2	391	<1	7.3	2.3	8.8	27	<2	191	< 0.5	10	17	NS
	130-135	11/16/2015	103.02	17.9	16	7.78	6.68	115	71	1051	1	30	<0.2	6.6	3	2	1.77	<1	2	3.6	341	<1	2.9	1.7	11.8	39	<2	56	< 0.5	3	5	NS
SL-8	140-145	11/12/2015	105.1	31.8	14.6	8.11	6.14	92	NA	819	1	33	<0.2	8.6	2	1	1.38	<1	2	4.3	345	<1	2.8	1.7	17.3	50	<2	43	< 0.5	2	7	NS
	150-155	11/9/2015	113.86	47.1	19.4	5.12	6.32	175	240	1382	<1	50	<0.2	9.7	4	2	2.13	1	4	5.3	414	<1	5.2	1.8	16.8	53	<2	65	< 0.5	4	8	NS
	160-165	11/5/2015	113.86	65	18	1.36	7.37	213	111	1781	2	64	<0.2	16.6	5	2	3.16	2	6	7.9	715	2	5.5	2.8	14.3	76	<2	88	< 0.5	5	13	NS
	170-175	11/4/2015	113.86	313	23	0.3	7.34	191	-60	5518	2	101	0.3	17.2	10	5	9.48	4	11	9	630	1	10.5	3.8	11.5	83	2	248	0.7	11	40	NS
	190-195	12/7/2015	185.18	4.3	13.3	5.14	6.38	71.6	239	135	<1	15	<0.2	2.9	2	<1	0.3	<1	<1	1.9	72	<1	3.6	0.6	7.5	20	<2	9	< 0.5	<1	<5	NS
SL-9	200-205	12/7/2015	185.18	0.87	13.3	4.81	6.42	70.77	235	12	<1	12	<0.2	2.3	<1	<1	<0.1	<1	<1	1.9	26	<1	1.6	0.5	7.2	17	<2	<1	< 0.5	<1	<5	NS
0_0	210-215	12/7/2015	185.18	1.26	13.3	4.81	6.4	72.69	231	14	<1	14	<0.2	2.6	<1	<1	<0.1	<1	<1	2.1	18	<1	1.6	0.6	6.9	19	<2	1	< 0.5	<1	<5	NS
	220-225	12/7/2015	185.18	0.33	13.8	4.07	5.61	75.39	284	7	<1	18	< 0.2	3.2	1	<1	<0.1	<1	<1	2.1	20	<1	1.5	0.7	6.5	23	<2	<1	< 0.5	<1	10	NS
	180-185	12/3/2015	178.7	3.92	12.6	4.71	6.67	202.4	221	6	<1	33	< 0.2	17	1	<1	<0.1	<1	<1	7	8	<1	1.1	1.1	9.6	93	<2	<1	< 0.5	<1	<5	NS
SL-10	190-195	12/3/2015	178.7	1.03	12.5	4.76	6.35	198.2	241	32	<1	39	<0.2	18.1	1	<1	0.11	<1	<1	7	14	<1	1.1	1.2	10.3	94	<2	2	< 0.5	<1	<5	NS
	200-205	12/3/2015	178.7	0.47	12.5	4.35	6.24	210.9	250	142	<1	52	<0.2	20.1	2	<1	0.34	<1	1	7.2	25	<1	1.5	1.3	10.4	101	<2	10	<0.5	<1	<5	NS
TW-1	239-242	12/8/2015	199.7	1.97	11.9	3.37	5.42	76.39	166	<5	<1	16	<0.2	3.3	<1	<1	1.5	<1	<1	1.4	127	<1	1.9	1	6.9	30	<2	<1	<0.5	<1	1157	NS
TW-3	239 - 242	7/7/2015	200	0.8	13.5	7.95	6.8	89	NA	<5	<1	9.3	<0.2	5	<1	<1	<0.1	<1	<1	1.6	1.7	<1	<0.2	<0.5	6.1	36	<2	<1	<0.5	<1	275	0.21
BW-1	216 - 231	7/14/2015	225.3	1.18	29.5	2.98	5.3	133	294	14	<1	49	<0.2	9.3	<1	<1	<0.1	<1	<1	4.8	5.2	<1	1.4	1.1	7.2	67	<2	<1	<0.5	<1	<5	0.22
PR-1	210 - 215	8/31/2015	208.9	2.39	19.6	4.91	5.8	188	264	177	<1	48	< 0.2	7.1	2	<1	0.29	<1	<1	5.4	52	<1	2.1	1.4	19	66	<2	10	< 0.5	<1	8	0.14
	220 - 225	8/31/2015	208.9	1.92	19.4	6.6	6.4	194	248	79	<1	40	< 0.2	11	2.4	<1	0.1	<1	1.1	4.6	32	<1	2.1	0.97	18	57	<2	4.7	< 0.5	<1	<5	0.2

	Well Informat	ion			Standard I	norganics			Rads	(pCi/l)		VOCs (ppb)			Herb Me	ets (ppb)		
Well ID	Screen Interval (ft) (depth below grade)	Sample Date	Chloride (ppm)	Nitrate (ppm)	Sulfate (ppm)	Total Alkalinity mg CaCO3/L	Perchlorate (ppb)	(qdd) SABM	Gross Alpha	Gross Beta	Toluene	Chloroform*	Methylmethacr ylate	Bisphenol A	Diethyltoluami de (DEET)	Metalaxyl	Alachlor OA	Caffeine	Didealkylatrazi ne
DEC T	OGS 1.1.1 Guida	ance Values	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-
DEC Pa	rt 703 Class GA Standards		250	10	250	-	-	500	-	1,000	5	7		-	-	-	-	-	-
DOH Drink	king Water Stand 1	lards Subpart 5-	250	10	250	-	18	-	15	50**		80		50	50	50	50	50	50
	210 - 215	7/1/2015	16	5.2	18	24	0.43	<0.1	<1	1.2±0.1	<0.5	1.7	<0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
SL-1	220 - 225	7/1/2015	19	4.6	19	32	0.41	<0.1	<1	<1	<0.5	1.7	<0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
31-1	230 - 235	6/30/2015	24	4.1	14	NA	0.35	<0.1	<1	<1	< 0.5	2.1	< 0.5	Trace	0.2	<0.2	<0.4	<0.2	<0.8
	240 - 235	6/10/2015	13	2.3	13	NA	<0.2	NS	<1	<1	<0.5	2.2	<0.5	Trace	<0.2	<0.2	< 0.4	<0.2	<0.8
	210 - 215	7/1/2015	39	2	12	32	0.21	<0.1	<1	1.1±0.1	< 0.5	2.4	< 0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
SL-2	220 - 225	6/30/2015	19	2.3	11	25	0.21	<0.1	<1	<1	<0.5	1.2	< 0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
51-2	230 - 235	6/30/2015	13	1.4	12	29	<0.2	<0.1	<1	<1	<0.5	1.9	<0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	240 - 245	6/30/2015	7.6	<0.5	7.4	13	<0.2	<0.1	<1	<1	<0.5	5.1	< 0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	210 - 215	7/7/2015	28	2.8	9.9	15	NS	<0.1	<1	2±0.1	< 0.5	5.4	< 0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
SL-3	220 - 225	7/6/2015	14	0.8	9.7	26	NS	<0.1	<1	<1	<0.5	1.3	<0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
36-3	230 - 235	7/6/2015	17	<0.5	11	13	NS	<0.1	<1	<1	<0.5	1.8	< 0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
	240 - 245	7/6/2015	7.8	<0.5	8.1	18	NS	<0.1	<1	<1	<0.5	3.2	< 0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
SL-4	230 - 235	7/7/2015	8.9	<0.5	7.9	13	NS	0.11	<1	<1	<0.5	2.4	< 0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
SL-4S	200 - 205	8/12/2015	22	<0.5	6.5	NS	<0.2	<0.1	<1	1±0.1	<0.5	1.6	< 0.5	< 0.5	<0.2	<0.2	< 0.4	<0.2	<0.8
01-40	210 - 215	8/12/2015	35	<0.5	5.9	NS	<0.2	<0.1	<1	<1	<0.5	3	<0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	200 - 210	7/13/2015	8	<0.5	6.9	56	NS	<0.1	<1	1.1±0.1	<0.5	<0.5	<0.5	< 0.5	<0.2	<0.2	<0.4	0.2	Trace
	210 - 215	7/13/2015	17	<0.5	10	28	NS	<0.1	<1	<1	<0.5	0.7	<0.5	< 0.5	<0.2	Trace	< 0.4	<0.2	<0.8
SL-5	220 - 225	7/8/2015	33	0.8	11	18	NS	<0.1	<1	<1	<0.5	0.9	<0.5	<0.5	<0.2	<0.2	<0.4	<0.2	<0.8
31-3	230 - 235	7/8/2015	7.4	<0.5	7.9	11	NS	<0.1	<1	<1	<0.5	3.4	<0.5	<0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	240 - 245	7/8/2015	10	<0.5	7.8	15	NS	<0.1	<1	<1	<0.5	3.2	<0.5	<0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	250 - 255	7/7/2015	13	0.5	8.8	16	NS	<0.1	<1	<1	<0.5	1.7	<0.5	< 0.5	<0.2	<0.2	<0.4	<0.2	<0.8
	170-175	11/30/2015	18	2.9	6	NS	NA	<0.1	<1	1.8±0.1	< 0.5	<0.5	<0.5	<0.2	<0.2	<0.2	< 0.4	<0.2	<0.8
SL-6	180-185	11/30/2015	15	2.4	6	NS	NA	<0.1	<1	1.8±0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
31-0	190-195	11/24/2015	13	1.9	7	NS	NA	NS	<1	1.6±0.1	<0.5	<0.5	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	200-205	11/24/2015	14	23.1	7	NS	NS	NS	<1	1.3±0.1	< 0.5	< 0.5	< 0.5	< 0.2	<0.2	<0.2	< 0.4	<0.2	<0.8

Indicates concentraton exceeds a standard NA = Not Analyzed NS = No Sampled Collected *Note that chloroform was detected in the pump blank samples and detections in well samples may be due to cross-contamination.

D Here D Her		tion			Standard I	norganics			Rads	(pCi/l)		VOCs (ppb))			Herb Me	ets (ppb)		
Mell ID	Screen Interval (ft) (depth below grade)	Sample Date	Chloride (ppm)	Nitrate (ppm)	Sulfate (ppm)	Total Alkalinity mg CaCO3/L	Perchlorate (ppb)	(dqq) SABM	Gross Alpha	Gross Beta	Toluene	Chloroform*	Methylmethacr ylate	Bisphenol A	Diethyltoluami de (DEET)	Metalaxyl	Alachlor OA	Caffeine	Didealkylatrazi ne
DEC T	OGS 1.1.1 Guid	ance Values	-	-	-	-	-	-	-	-		-		-	-	-	-	-	-
DEC Pa	rt 703 Class GA Standards		250	10	250	-	-	500	-	1,000	5	7		-	-	-	-	-	-
DOH Drink	king Water Stand 1	dards Subpart 5-	250	10	250	-	18	-	15	50**		80		50	50	50	50	50	50
	160-165	11/23/2015	8	<0.5	10	NS	NA	<0.1	<1	2.0±0.1	<0.5	1.6	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	170-175	11/23/2015	<12	<2	<20	NS	NA	<0.1	<1	1.6±0.1	<0.5	1.7	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
SL-7	180-185	11/19/2015	8	<0.5	12	NS	NA	<0.1	<1	1.5±0.1	<0.5	1.6	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	190-195	11/18/2015	8	<0.5	12	NS	NA	<0.1	<1	1.5±0.1	<0.5	0.8	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	200-205	11/18/2015	8	<0.5	11	NS	NA	<0.1	<1	1.5±0.1	<0.5	1.4	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	110-115	11/17/2015	<30.0	<5.0	<50.0	NS	<0.2	<0.1	<1	2.1±0.1	<0.5	1.7	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	120-125	11/16/2015	<30.0	<5.0	<50.0	NS	NA	<0.1	<1	2.1±0.1	< 0.5	3	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	130-135	11/16/2015	<30.0	<5.0	<50.0	NS	<0.2	<0.1	<1	1.7±0.1	< 0.5	3.3	<0.5	<0.2	<0.2	<0.2	<0.4	< 0.2	<0.8
SL-8	140-145	11/12/2015	31	<5.0	<50.0	NS	<0.2	NS	<1	1.5±0.1	< 0.5	4.5	<0.5	<0.2	<0.2	<0.2	<0.4	< 0.2	<0.8
	150-155	11/9/2015	30 30	<5.0	<50.0	NS	<0.2	<0.1	<1	1.6±0.1 2.6±0.1	<0.5 <0.5	3.8 2.2	<0.5	<0.2	Trace Trace	<0.2	<0.4	<0.2	<0.8 <0.8
	160-165 170-175	11/5/2015 11/4/2015	<30.0	<5.0 <5.0	<50.0 <50.0	NS NS	<0.2	<0.1	<1 5.2±0.2	2.6±0.1 6.1±0.2	<0.5	<0.5	<0.5 <0.5	<0.2	0.3	<0.2	<0.4 <0.4	<0.2 Trace	<0.8
	190-195	12/7/2015	<30.0	<0.5	<50.0	NS	<0.2 NS	<0.1	5.2±0.2	<1 <1	<0.5	2.5	<0.5	Trace <0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	200-205	12/7/2015	11	<0.5	6	NS	NS	<0.1	<1	<1	<0.5	2.3	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
SL-9	210-205	12/7/2015	10	<0.5	7	NS	NS	<0.1	<1	<1	<0.5	2.5	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	220-225	12/7/2015	9	0.5	7	NS	NS	<0.1	<1	<1	<0.5	0.8	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	180-185	12/3/2015	15	2.1	14	NS	NS	<0.1	<1	1.1±0.1	< 0.5	1.8	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
SL-10	190-195	12/3/2015	14	1.9	15	NS	NS	<0.1	<1	1.4±0.1	< 0.5	1.7	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
	200-205	12/3/2015	14	1.7	14	NS	NS	<0.1	<1	1.4±0.1	< 0.5	1.6	<0.5	<0.2	<0.2	<0.2	<0.4	<0.2	<0.8
TW-1	239-242	12/8/2015	10	<0.5	6	NS	NS	<0.1	<1	<1	9.3	1.7	0.5	Trace	<0.2	<0.2	<0.4	<0.2	<0.8
TW-3	239 - 242	7/7/2015	8.2	<0.5	8.2	NS	NS	<0.1	<1	<1	< 0.5	2.3	<0.5	< 0.5	<0.2	<0.2	<0.4	< 0.2	<0.8
BW-1	216 - 231	7/14/2015	9.7	0.7	8.2	NS	NS	<0.1	NS	NS	< 0.5	0.5	<0.5	< 0.5	<0.2	<0.2	Trace	< 0.2	<0.8
DD 4	210 - 215	8/31/2015	38	0.6	10	NS	<0.2	<0.1	<1	1.1±0.1	< 0.5	0.5	<0.5	< 0.5	<0.2	<0.2	<0.4	< 0.2	<0.8
PR-1	220 - 225	8/31/2015	28	2.2	12	NS	<0.2	<0.1	<1	1±0.1	< 0.5	2	<0.5	0.6	<0.2	Trace	<0.4	< 0.2	<0.8

Indicates concentraton exceeds a standard NA = Not Analyzed NS = No Sampled Collected *Note that chloroform was detected in the pump blank samples and detections in well samples may be due to cross-contamination.

APPENDIX

Ε

Analytical Results Surface Water Sample Collected on May 8, 2015 Sandland/Wainscott Sand & Gravel 585 Middle Line Highway,Noyack, NY Sample ID: SL-1

Gross beta.....

Sample Description: Surface Water Pond, N/E Property Corner Sample Date: 5/8/2015 Sample Collector: NYSDEC Personnel

Notes: No water quality standards have been established by the New York State Department of Environmental Conservation (NYSDEC) for stormwater. NYSDEC Groundwater Effluent Limits (GEL) established for analytes tested are indicated for comparison purposes only. GELs not shown have not been established. '*' symbol means concentrations reported exceed the Groundwater Effluent Limit (GEL). '<' symbol means "less than" indicating <u>no</u> detection. mg/L = milligrams per liter; ug/L = micrograms per liter.

	Result	GEL			Result	GEL	<u>.</u>
===== Results for Sample Group: ALDICARE	PESTICIDES	analyze	d by Suffe	olk County Department of Health Services ======			
Aldicarb <		0.35		Carbaryl	0.5	29.00	ug/L
Aldicarb-Sulfoxide <		4.00	ug/L	1-Naphthol	0.5	29.00	ug/L
Aldicarb-Sulfone <	0.5	2.00	ug/L	Methomyl	0.5	0.35	ug/L
Carbofuran		15.00	ug/L	Propoxur (Baygon)	0.5	0.55	ug/L
3-Hydroxycarbofuran		13.00	ug/L	Methiocarb	0.5		ug/L ug/L
Oxamyl	0.5	50.00	ug/L	Methiocarb sulfone	0.5		ug/L
Oxamy:	0.5	50.00	ug/H	Mechiocarb Burrone	0.5		ug/ш
===== Results for Sample Group: CHLORINAT	ED PESTICI	DES anal	yzed by Su	folk County Department of Health Services ===			
alpha-BHC <	0.2		ug/L	4,4-DDD <	0.2	0.30	ug/L
beta-BHC <	0.2		ug/L	4,4-DDT <	0.2	0.20	ug/L
gamma-BHC (Lindane) <	0.02		ug/L	Endrin <	0.01		ug/L
delta-BHC <	0.2		ug/L	Chlordane	0.38*	0.05	ug/L
Heptachlor <	0.04	0.04	ug/L	Alachlor <	0.2	0.50	ug/L
Heptachlor epoxide <			ug/L	Methoxychlor <	0.1	35.00	ug/L
Aldrin <	0.2		ug/L	Endosulfan II	0.2		ug/L
Dieldrin <		0 004	ug/L	Endosulfan Sulfate <	0.2		ug/L
Endosulfan I <		0.001	ug/L	1,2-dibromoethane	0.01		ug/L
Dacthal			ug/L	1,2-dibromo-3-chloropropane	0.02	0 04	ug/L
4,4-DDE <		0 20	ug/L		0.02	0.04	ug/ш
	012	0.20	ag/ 2				
===== Results for Sample Group: DACTHAL P	ESTICIDES	analyzed	by Suffol	k County Department of Health Services ======			
Monomethyltetrachloroterephthalate <			ug/L	Tetrachloroterephthalic acid <	5.	50.00	ug/L
		ES analy	-	folk County Department of Health Services ====			
Didealkylatrazine (G-28273) <	0.8		ug/L	Dichlorvos	Trace		ug/L
Deisopropylatrazine (G-28279) <			ug/L	Propamocarb hydrochloride <	0.3		ug/L
Desethylatrazine (G-30033) <	0.4		ug/L	2,6-Dichlorobenzamide <	0.5		ug/L
Imidacloprid <			ug/L	Ibuprofen <	0.2		ug/L
Imidacloprid Urea <	0.2		ug/L	Gemfibrozil <	0.4		ug/L
Alachlor OA (Oxanilic Acid) <	0.4		ug/L	Metalaxyl <	0.2		ug/L
Alachlor ESA (Sulfonic Acid) <	0.2		ug/L	Metolachlor <	0.2		ug/L
Metolachlor metabolite (CGA-37735) <	0.2		ug/L	Tebuthiuron <	0.3	50.00	ug/L
Metolachlor OA (CGA-51202) <	0.3		ug/L	Caffeine	Trace		ug/L
Metolachlor ESA (CGA-354743) <	0.3		ug/L	Dinoseb <	0.3	2.00	ug/L
Metolachlor metabolite (CGA-41638) <	0.3		ug/L	Bisphenol A <	0.2		ug/L
Metolachlor metabolite (CGA-40172) <	0.3		ug/L	Diuron <	0.2		ug/L
Metolachlor metabolite (CGA-67125) <			ug/L	Phenytoin (Dilantin) <	0.2		ug/L
2-HydroxyAtrazine (G-34048)	Trace		ug/L	4-Hydroxyphenytoin	0.5		ug/L
Malaoxon <	0.2		ug/L	Diethyltoluamide (DEET)	0.9		ug/L
Trichlorfon <			ug/L	Acetaminophen	Trace		ug/L
Siduron <			ug/L	Bisphenol B	0.2 ug	/T.	ug/ш
			-	17 alpha Ethnylestradiol <			
Estrone <			ug/L		0.5 ug		
Diethylstilbestrol <			ug/L	17 beta Estradiol <	0.5 ug		
4-Androstene-3,17-dione <	0.2		ug/L	Picaridin <	0.2 ug	/ L	
===== Results for Sample Group: METALS an	alvzed bv	Suffolk	County Der	partment of Health Services ====================================			
Silver (Ag)	2.5	100.00	ug/L	Antimony (Sb)	0.4	6.00	ug/L
Aluminum (Al)		2000.00	ug/L	Selenium (Se)	1.	20.00	ug/L
Arsenic (As)	13.	50.00	ug/L	Strontium	110.		ug/L
Barium (Ba)		2000.00	ug/L	Tellurium	0.5		ug/L
Beryllium (Be)		3.00	ug/L	Thallium (T1)	0.2	0.50	ug/L ug/L
Cadmium (Cd) <		10.00	ug/L ug/L	Thorium (Th)	2.	0.50	ug/L ug/L
Cobalt (Co) <	⊥. 2.	10.00	ug/L ug/L	Tin	∠. 0.5		
Cobalt (Co) Chromium (Cr)	2. 4.	100.00	5.	Tin < Titanium (Ti)			ug/L
			ug/L		129.		ug/L
Copper (Cu)		1000.00	ug/L	Uranium	1.5		ug/L
Germanium	0.6	1 40	ug/L	Vanadium (V)	7.		ug/L
Mercury (Hg) <	0.3	1.40	-	Zinc (Zn)		5000.00	ug/L
Manganese (Mn)	1.2*	0.60	mg/L	Iron (Fe)	2.43*	0.60	mg/L
Molybdenum (Mo)	3.		ug/L	Sodium (Na)	10.7		mg/L
Nickel (Ni)	6.5	200.00	ug/L	Potassium	32.5		mg/L
Lead (Pb)	8.	50.00	ug/L	Calcium	28.2		mg/L
Lithium	1		ug/L	Magnesium	8.8	35.0	mg/L
Deculta for formula durant 1 4 pic of	no onclose -	d br a f	folle Court	w Department of Health Coursings			
		u by Sui		y Department of Health Services ==========			
1,4-Dioxane <	0.2		ug/L				
===== Results for Sample Group: RADIOLOGI	CAL analyz	ed by Su	ffolk Cour	nty Department of Health Services ==========			
Gross alpha	16.		pCi/L	Tritium <		20000	pCi/T
Gross beta	43.2		pCi/L		200.	20000	r (r / L

pCi/L

43.2

Sandland/Wainscott Sand & Gravel	Sample Description: Surface Water Pond, N/E Property Corner
585 Middle Line Highway,Noyack, NY	Sample Date: 5/8/2015
Sample ID: SL-1	Sample Collector: NYSDEC Personnel

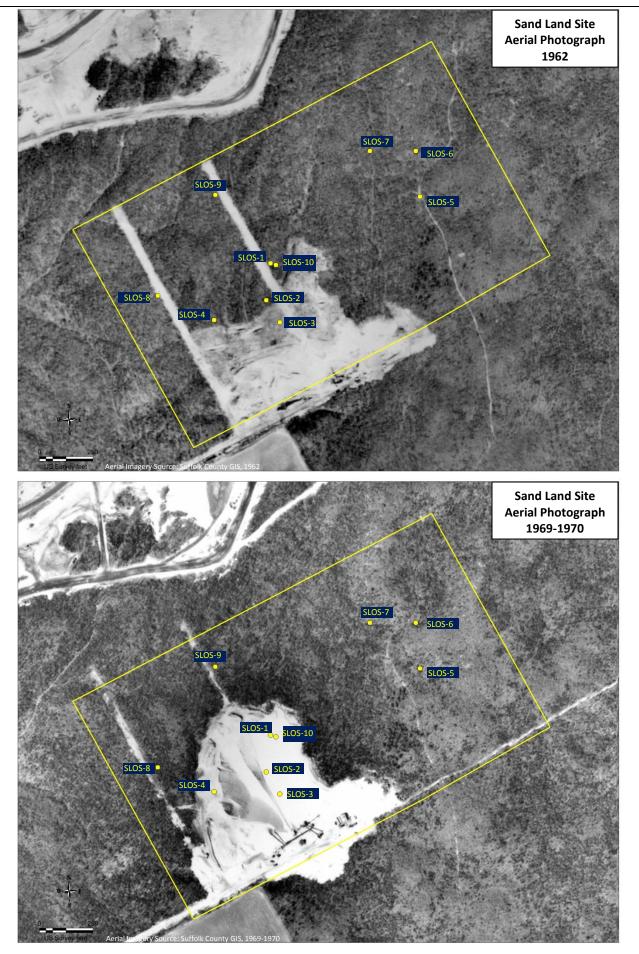
Notes: No water quality standards have been established by the New York State Department of Environmental Conservation (NYSDEC) for stormwater. NYSDEC Groundwater Effluent Limits (GEL) established for analytes tested are indicated for comparison purposes only. GELs not shown have not been established. '*' symbol means concentrations reported exceed the Groundwater Effluent Limit (GEL). '<' symbol means "less than" indicating \underline{no} detection. mg/L = milligrams per liter; ug/L = micrograms per liter.

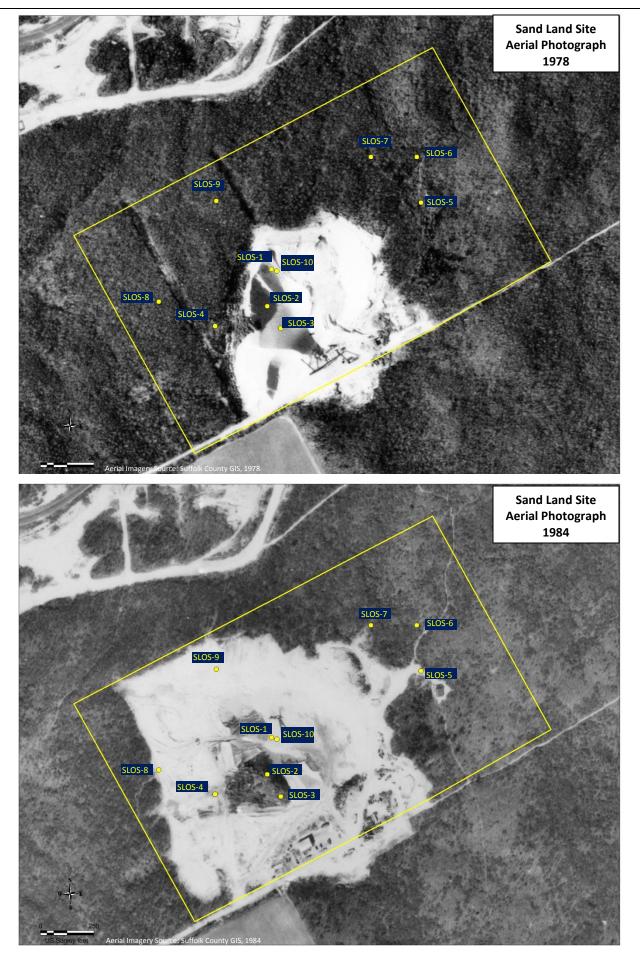
RESULTS CONTINUED FROM PRECEDING PAGE

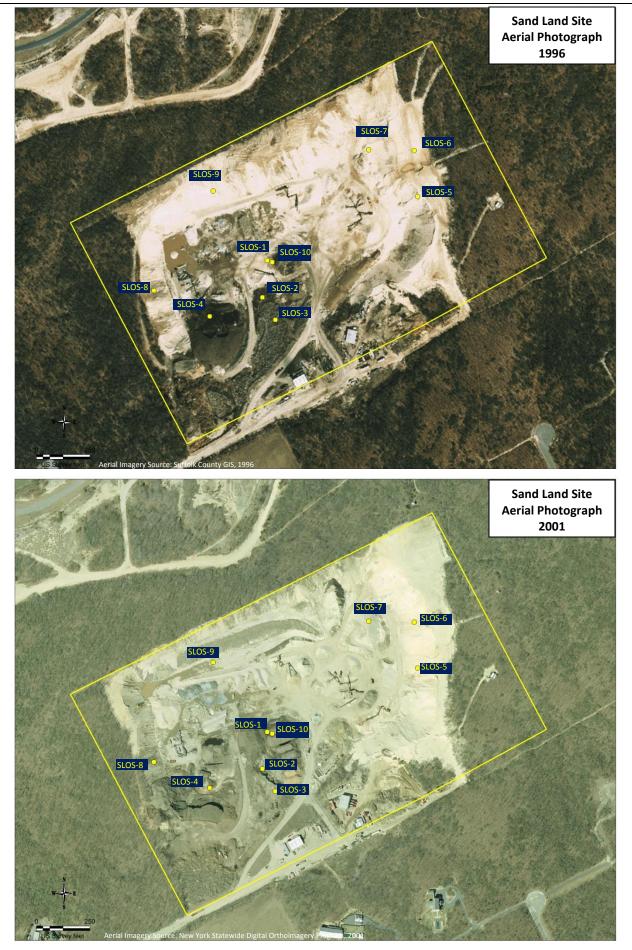
	Resul	t GEL		Result	GEL	
pH-Field	6.81	6.5 - 8.5 su or natural qw	Nitrite (NO2-N) Nitrate			mg/L mg/L
Specific Conductivity-Field Chloride (Cl)	353	um/cm 500.00 mg/L	Bromide Orthophosphate	< 5.0		mg/L mg/L
Sulfate (SO4)	50.	500.00 mg/L 500.00 mg/L mg/L	Fluoride		3.0	mg/L

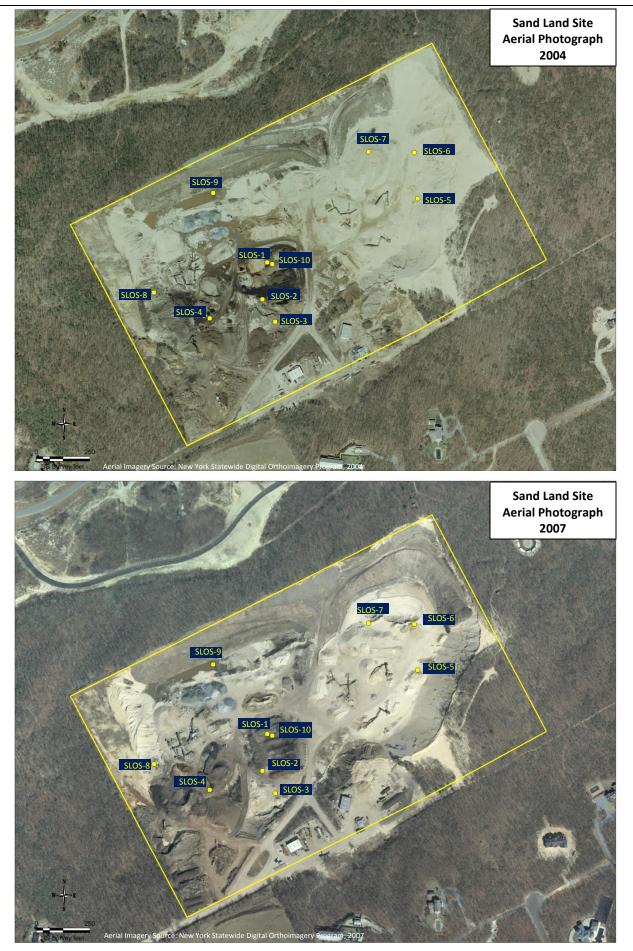
Pogulta for Sample Croup: MOLATIE	DCANTOS -	alurod	by cuf	olk County Department of Health Services =======			
Chlorodifluoromethane <	0.5	5.00	uq/L	Chlorobenzene	0.5	5.00	uq/L
Dichlorodifluoromethane	0.5	5.00	ug/L ug/L	Ethvlbenzene	0.5	5.00	ug/L ug/L
Chloroethane	0.5	5.00	ug/L ug/L	o-Xylene <	0.5	5.00	
Bromomethane	0.5	5.00		m & p-Xylene <	0.5	5.00	ug/L
Chloromethane			ug/L		0.5		ug/L
	0.5	5.00	ug/L	Total Xylenes		5.00	ug/L
Trichlorofluoromethane <	0.5	5.00	ug/L	2-Chlorotoluene <	0.5	5.00	ug/L
Vinyl Chloride <	0.5	2.00	ug/L	4-Chlorotoluene <	0.5	5.00	ug/L
Methylene Chloride <	0.5	5.00	ug/L	Diethyl Ether <	0.5		ug/L
1,1 Dichloroethane <	0.5	5.00	ug/L	Acrylonitrile <	0.5	5.00	ug/L
trans 1,2 Dichloroethene <	0.5	5.00	ug/L	Ethyl Methacrylate <	0.5		ug/L
Chloroform <	0.5	7.00	ug/L	1,3,5 Trimethylbenzene <	0.5	5.00	ug/L
1,2 Dichloroethane <	0.5	0.60	ug/L	1,2,4 Trimethylbenzene <	0.5	5.00	ug/L
1,1,1 Trichloroethane <	0.5	5.00	ug/L	1,2 Dichlorobenzene (o) <	0.5	5.00	ug/L
Carbon Tetrachloride <	0.5	5.00	ug/L	1,3-Dichlorobenzene (m) <	0.5	5.00	ug/L
1-Bromo-2-Chloroethane <	0.5	5.00	ug/L	1,4-Dichlorobenzene (p) <	0.5	5.00	ug/L
1,2 Dichloropropane <	0.5	1.00	ug/L	p-Diethylbenzene <	0.5	5.00	ug/L
Trichloroethene <	0.5	5.00	ug/L	1,2,4,5 Tetramethylbenzene <	0.5	5.00	ug/L
Chlorodibromomethane <	0.5	50.00	ug/L	1,2,4 Trichlorobenzene <	0.5	5.00	ug/L
2-Bromo-1-Chloropropane <	0.5	5.00	ug/L	1,2,3 Trichlorobenzene <	0.5	5.00	ug/L
Bromoform <	0.5	50.00	ug/L	Ethenylbenzene (Styrene) <	0.5	5.00	ug/L
Tetrachloroethene <	0.5	5.00	ug/L	Isopropylbenzene <	0.5	5.00	ug/L
cis-1,2-Dichloroethene <	0.5	5.00	ug/L	n-Propylbenzene <	0.5	5.00	ug/L
Freon 113 <	0.5	5.00	ug/L	tert-Butylbenzene <	0.5	5.00	ug/L
Dibromomethane <	0.5	5.00	ug/L	sec-Butylbenzene <	0.5	5.00	ug/L
1,1 Dichloropropene <	0.5	5.00	ug/L	p-Isopropyltoluene <	0.5	5.00	ug/L
Methyl Isothiocyanate <	2.	50.00	ug/L	n-Butylbenzene <	0.5	5.00	ug/L
Carbon Disulfide <	0.5	60.00	uq/L	Hexachlorobutadiene	0.5	0.50	uq/L
Methyl Methacrylate <	0.5	50.00	uq/L	Methyl-Tert-Butyl-Ether (MTBE) <	0.5	10.00	uq/L
1,1 Dichloroethene	0.5	5.00	uq/L	Naphthalene <	0.5	10.00	uq/L
Bromodichloromethane	0.5	50.00	uq/L	1,4-Dichlorobutane	0.5	5.00	uq/L
2,3 Dichloropropene	0.5	5.00	uq/L	Methyl Sulfide	1.7	5.00	uq/L
cis-1,3-Dichloropropene	0.5	5.00	uq/L	Dimethyldisulfide <	0.5		uq/L
trans-1,3-Dichloropropene	0.5	5.00	ug/L	Bromobenzene	0.5	5.00	ug/L
1,1,2 Trichloroethane	0.5	1.00	uq/L	2-Butanone (MEK) <	20.	5.00	ug/L
1,1,1,2 Tetrachloroethane	0.5	5.00	ug/L ug/L	Tetrahydrofuran	20.	50.00	ug/L
1,1,2,2-Tetrachloroethane	0.5	5.00	ug/L	Allyl chloride	0.5	5.00	ug/L
1,2,3 Trichloropropane	0.5	0.04	uq/L	Methacrylonitrile <	0.5	5.00	ug/L
2,2 Dichloropropane	0.5	5.00	ug/L ug/L	d-Limonene	0.5	5.00	ug/L
1,3 Dichloropropane	0.5	5.00	ug/L	Propanal	15.		ug/L
Bromochloromethane	0.5	5.00	ug/L	Isobutane <	2.		ug/L ug/L
Brozene	0.5	1.00	ug/L ug/L	n-Butane	2.		ug/L ug/L
Toluene	0.5	5.00		II-Buldile	2.		ug/ц
101uene <	0.5	5.00	ug/L				
	Result	GEL			Result	GEL	
	100010	011	-		1000120	000	-
		nalyzed	-	olk County Department of Health Services =======			
Acifluorfen <	0.1		ug/L	2,4-DB <	0.1		ug/L
Bentazon <	0.1		ug/L	3,5-Diclorobenzoic Acid <	0.1		ug/L
Chloramben <	0.1	50.00	ug/L	4-Nitrophenol <	0.1		ug/L
2,4-D <	0.1		ug/L	Dinoseb <	0.1	2.00	ug/L
Dicamba <	0.1	0.44	ug/L	MCPA <	0.1		ug/L
Dichloroprop <	0.1		ug/L	MCPP <	0.1		ug/L
Picloram <	0.1		ug/L	Pentachlorophenol <	0.1	2.00	ug/L
	0.1		~ <u></u> , <u></u>	1 chica children phicher 1 fifth fif	0.1		
2,4,5-TP (Silvex) <	0.1		ug/L	2,4,5-T <	0.1		ug/L

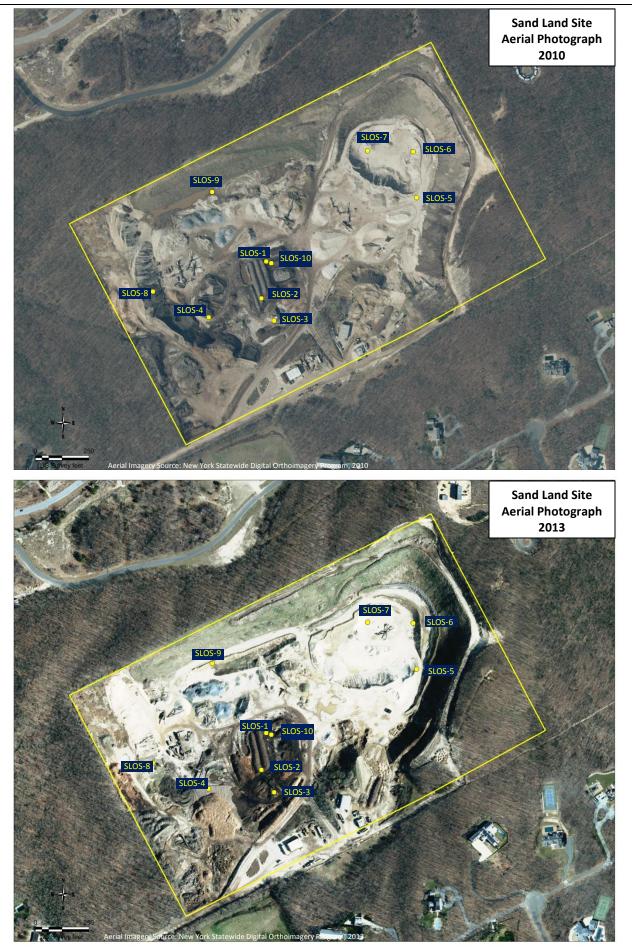
Sandland/Wainscott Sand & Gravel 585 Middle Line Highway,Noyack, NY Sample ID: SL-1 Sample Description: Surface Water Pond, N/E Property Corner Sample Date: 5/8/2015 Sample Collector: NYSDEC Personnel


Notes: No water quality standards have been established by the New York State Department of Environmental Conservation (NYSDEC) for stormwater. NYSDEC Groundwater Effluent Limits (GEL) established for analytes tested are indicated for comparison purposes only. GELs not shown have not been established. '*' symbol means concentrations reported exceed the Groundwater Effluent Limit (GEL). '<' symbol means "less than" indicating <u>no</u> detection. mg/L = milligrams per liter; ug/L = micrograms per liter.


	Result	GEL			Result	GEL	<u>.</u>
RESULTS CONTINUED FROM PRECEDING PAGE							
		CS METH	-	zed by Suffolk County Department of Health S		=====	
1-Methylnaphthalene <	4.		ug/L	Endosulfan Sulfate <	4.		ug/L
2-Methylnapthalene <	4.		ug/L	EPTC <	4.		ug/L
Acenaphthene <	4.	20.00	ug/L	Ethofumesate <	4.		ug/L
Acenaphthylene <	4.		ug/L	Etofenprox <	10.		ug/L
Acetochlor <	4.		ug/L	Etofenprox alpha-CO <	10.		ug/L
Alachlor <	4.	0.50	ug/L	Ethyl Parathion <	4.		ug/L
Allethrin <	4.		ug/L	Fluoranthene <	4.	50.00	ug/L
Anthracene <	10.	50.00	ug/L	Fluorene <	4.	50.00	ug/L
Atrazine <	2.	7.50	ug/L	Hexachlorobenzene <	2.	0.04	ug/L
Azoxystrobin <	4.		ug/L	Hexachlorocyclopentadiene <	2.	5.00	ug/L
Benfluralin <	10.		ug/L	Hexachloroethane <	20.	5.00	ug/L
Benzo(A)Anthracene <	10.		ug/L	Hexazinone <	20.	50.00	ug/L
Benzo(B)Fluoranthene <	4.	0.002	ug/L	<pre>Indeno(1,2,3-cd)Pyrene <</pre>	4.	0.002	ug/L
Benzo(GHI)Perylene <	4.		ug/L	Iodofenphos <	4.		ug/L
Benzo(K)Fluoranthene <	4.	0.002	ug/L	Iprodione <	10.		ug/L
Benzo(A)Pyrene <	0.4	ND	ug/L	Isofenphos <	10.		ug/L
Benzophenone <	3.		ug/L	Kelthane <	10.		ug/L
Benzyl butyl phthalate <	4.		ug/L	Malathion <	10.	7.00	ug/L
Bis(2-ethylhexyl)adipate <	10.		ug/L	Metalaxyl <	4.		ug/L
Bis(2-ethylhexyl)phthalate <	60.	5.00	uq/L	Methoprene <	4.		uq/L
Bisphenol A <	10.		ug/L	Methoxychlor <	2.	35.00	ug/L
Bloc <	4.		uq/L	Methyl Parathion <	4.	1.50	ug/L
Bromacil <	10.	4.4	uq/L	Metolachlor <	4.		uq/L
Butachlor <	4.	3.50		Metribuzin <	4.	50.00	uq/L
Carbamazepine <	10.		uq/L	Naled (Dibrom) <	4.		uq/L
Carbazole <	4.		ug/L	Napropamide <	4.		uq/L
Carisoprodol <	10.		uq/L	Pendimethalin <	4.	5.00	uq/L
Chlordane	4.	0.05		Pentachlorobenzene	4.	5.00	ug/L
Chlorofenvinphos	4.		uq/L	Pentachloronitrobenzene	4.	ND	uq/L
Chlorothalonil	20.	5.00	ug/L	Permethrin	4.	112	ug/L
Chloroxylenol	4.		uq/L	Phenanthrene	4.	50.00	uq/L
Chlorpyriphos	4.		uq/L	Piperonyl butoxide	10.	50.00	uq/L
Chrysene	4.	0.002		Prallethrin	4.		ug/L
Cyfluthrin	4.	0.002	uq/L	Prometon	10.	50.00	uq/L
Cypermethrin	10.		ug/L	Prometryne <	4.	50.00	ug/L
Dacthal	4.		ug/L	Propachlor	4.	35.00	ug/L
Deltamethrin	10.		ug/L	Propiconazole (Tilt) <	4.	55.00	ug/L
Dibenzo(A,H)Anthracene	4.		ug/L	Pyrene	10.	50.00	ug/L
Dibutyl Phthalate	20.		ug/L ug/L	Resmethrin <	4.	50.00	ug/L ug/L
Dichlobenil	4.		ug/L ug/L	Ronstar	4.		ug/L ug/L
Dichlorvos	4. 10.		ug/L ug/L	Simazine <	4. 2.	0.50	5.
	10. 4.	0 004		Sumithrin <	4.	0.50	
Dieldrin <		0.004	ug/L				ug/L
Diethyl phthalate <	20.	50.00	ug/L	Tebuthiuron <	10.	50.00	ug/L
Diethyltoluamide (DEET) <	4.	F0 00	ug/L	Terbacil <	10.	50.00	ug/L
Dimethyl phthalate <	4.	50.00	ug/L	Triadimefon <	10.		ug/L
Dioctyl Phthalate <	4.	50.00	ug/L	Triclosan <	10.	25 02	ug/L
Disulfoton <	10.	50.00	ug/L	Trifluralin <	10.	35.00	ug/L
Disulfoton sulfone <	4.	ND	ug/L	Vinclozolin <	10.		ug/L


APPENDIX


F


Historical Aerial Photographs Sand Land Site

APPENDIX

G

Summary of Detected Analytes 2017 Groundwater Samples

	Well Inform	nation				Field Pa	rameters	5												Metals										
Well ID	Screen Interval (Feet Below Grade)	DTW (Feet Below Grade)	Sample Date	Conductivity (uS)	Temp (C)	Hd	Dissolved Oxygen (ppm)	Turbidity (ntu)	Oxidation-Reduction Potential	Aluminum (ppb)	Arsenic (ppb)	Barium (ppb)	Chromium (ppb)	Cobalt (ppb)	Copper (ppb)	Lithium (ppb)	Manganese (ppb)	Molybdenum (ppb)	Nickel (ppb)	Strontium (ppb)	Thallium (ppb)	Titanium (ppb)	Uranium (ppb)	Vanadium (ppb)	Zinc (ppb)	Calcium (ppm)	Iron (ppm)	Magnesium (ppm)	Potassium (ppm)	Sodium (ppm)
	C TOGS 1.1.1 Gu			-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	0.5	-	-	-	2,000	-	-	35	-	20
	03 Class GA Gro rinking Water St			-	-	-	-	-	-	-	25	1,000	50	-	200	-	300	-	100	-	-	-	-	-	-	-	0.3	-	-	20
	Advisory Level			-	-	-	-	-	-	-	10	2,000	100	-	1,300***	-	300	-	100	-	2	-	30	-	5,000	-	0.3	-	-	-
USEPA Health	& PFO	· /	momeu Pr05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SLOS-1	153 - 158	151.3	10/10/2017	269	16.8	5.98	1.45	4.97	NS	207	<1	78	2.2	<1	<5	NA	56	<1	4.2	131	<0.2	11	< 0.5	<1	<5	29	0.43	9.1	1.5	9.5
SLOS-1	153 - 158	NA	10/17/2017	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SLOS-1	160 - 165	151.3	10/10/2017	218	17.0	6.06	3.00	0.94	NS	18	<1	50	1.4	<1	<5	1.7	22	<1	2.1	108	< 0.2	<1	< 0.5	<	<5	23	< 0.1	6.8	1	8.8
SLOS-1	170 - 175	151.3	10/10/2017	302	17.2	5.86	0.45	0.62	NS	9.5	<1	95	8.6	<1	<5	1.5	25	<1	2.1	162	<0.2	<1	< 0.5	2.3	<5	32	< 0.1	10	1.3	12
SLOS-2	150 - 155	150.43	10/11/2017	854	20.0	6.39	1.02	4.16	118	228	<1	408	1.7	1.7	8.6	NA	457	<1	8.9	365	<0.2	13	2.5	<1	<5	87	0.43	17	82	18
SLOS-2	150 - 155	NA	10/17/2017	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SLOS-2 DUP	150 - 155	NA	10/17/2017	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SLOS-2	160 - 165	150.43	10/11/2017	1,263	18.0	6.16	0.94	3.87	124	268	<1	525	1.5	<1	12	NA	160	<1	5.8	441	<0.2	14	5.3	1.1	<5	99	0.55	26	161	33
SLOS-2	170 - 175	150.43	10/11/2017	610	17.2	5.49	1.67	0.93	154	22	<1	214	9.6	<1	5.6	1.5	21	<1	2.9	220	<0.2	1.1	0.86	2.8	<5	43	<0.1	12	72	15
SLOS-3 SLOS-3	157 - 162 157 - 162	154.65 NA	10/10/2017 10/16/2017	953 NS	18.9 NS	6.24 NS	3.40 NS	5.04 NS	127 NS	170	<1 NS	314 NS	2.1 NS	<1 NS	<5 NS	NA	23 NS	<1	2.9	481	<0.2	7.6	1.4 NS	<1 NS	<5 NS	101 NS	0.31 NS	25 NS	67	23 NS
SLOS-3 SLOS-3 DUP	157 - 162	NA	10/16/2017	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SLOS-3 DOP	160 - 165	154.65	10/10/2017	664	20.2	5.97	3.34	1.74	148	83	<1	98	1.6	<1	<5	NA	19	<1	2.6	311	<0.2	4.5	0.66	<1	<5	69	0.18	16	48	15
SLOS-3	170 - 175	154.28	10/9/2017	273	16.3	5.59	4.17	0.02	NS	5.7	<1	87	2.2	<1	<5	<1	8.1	<1	1.4	127	<0.2	<1	< 0.5	<1	<5	22	<0.1	9.8	8	10
SLOS-4	145 - 150	142.81	10/11/2017	557	18.0	6.21	1.41	4.92	NS	219	<1	204	1.5	<1	<5	NA	52	<1	3.2	258	<0.2	15	< 0.5	<1	<5	53	0.52	14	27	17
SLOS-4	155 - 160	142.81	10/11/2017	729	17.5	6.25	0.55	1.42	NS	19	<1	286	8	<1	<5	1.2	23	<1	2.9	437	< 0.2	1.5	< 0.5	2.2	<5	71	< 0.1	23	14	20
SLOS-4 DUP	155 - 160	142.81	10/11/2017	729	17.5	6.25	0.55	1.42	NS	21	<1	262	5.8	<1	<5	1.1	28	<1	2.8	422	< 0.2	1.4	< 0.5	1.6	<5	70	< 0.1	23	13	21
SLOS-4	165 - 170	142.81	10/11/2017	632	17.2	6.26	1.21	0.69	NS	9.4	<1	358	<1	<1	<5	1.4	10	<1	2.1	385	< 0.2	<1	< 0.5	<	<5	60	< 0.1	14	28	17
SLOS-5	145 - 150	143	10/12/2017	196	15.2	5.24	0.82	1.25	193	75	<1	62	<1	2.2	<5	NA	152	<1	5	119	< 0.2	4	< 0.5	<1	<5	22	0.21	5.4	1.2	10
SLOS-5	150 - 155	143	10/12/2017	147	15.7	5.03	1.64	3.22	208	272	<1	46	2.5	1.9	<5	NA	138	<1	4.6	83	<0.2	15	<0.5	<1	<5	16	0.57	4	1.2	9.7
SLOS-5	160 - 165	143	10/12/2017	121	15.8	4.70	2.58	0.33	225	12	<1	32	4.5	<1	<5	<1	43	<1	2	55	<0.2	<1	<0.5	1.1	<5	8.9	<0.1	4	0.99	11
SLOS-5	170 - 175	143	10/12/2017	133	15.5	5.02	4.96	0.01	199	5.2	<1	29	3.6	<1	<5	<1	23	<1	1.4	56	<0.2	<1	<0.5	<1	<5	9.8	<0.1	4.9	0.9	11
SLOS-5 DUP	170 - 175	143	10/12/2017	133	15.5	5.02	4.96	0.01	199	<5	<1	29	3.3	<1	<5	<1	21	<1	1.3	56	<0.2	<1	< 0.5	<1	<5	10	<0.1	5.1	0.94	11
SLOS-6	140 - 145	137.02	10/12/2017	98	17.1	6.11	6.22	9.71	NS	608	<1	31	2.5		<5	NA	269	<1	4.2	40	< 0.2	36	< 0.5	1.3	<5	6.8	0.97	2.9	2.2	7.4
SLOS-6	150 - 155	137.02	10/12/2017	138	168	5.79	1.78	5	NS	186	<1	46	1.2	8.2	<5	NA	528	<1	4.4	58	<0.2	9.1	< 0.5	<1	<5	11	0.34	4.2	3.4	8.7
SLOS-6	160 - 165	137.02	10/12/2017	308	16.7	6.10	0.18	4.58	NS	57	<1	234	3.9	17	<5	1.4	2,040	<1	7.8	124	< 0.2	2.8	0.72	1.2	5.5	22	0.13	11	32	11
SLOS-6	170 - 175	137.02	10/12/2017	825	16.2	6.53	0.23	3.61	NS	88	<1	462	<1	37	13	NA	4,450	<1	20	296	0.24	3.9	9.4	<1	6.3	59	0.18	26	86	17

Notes NS = No Sample Collected

ppb = parts per billion ppt = parts per trillion

pCi = picocurie

*AGB = gross beta - 0.82*potassium conc. in mg/l **AGB has a guidance activity value of 50 pC// that is used for screening under Subpart 5-1 of the NYS Sanitary Code indicates concentration exceeds a standard or guidance value

uS = micro siemens

*** Action Level for public water suppliers for Lead and Copper

DUP = duplicate sample for quality control ppm = parts per million

"<" = less than, indicating no detection

NA = Sample Collected, Analyte Not Reported

	Well Inform	nation		Radiol	logicals (pCi/l	I)			Standa	rd Inorg	anics (pr	om)		VOCs (ppb)	1,4 Dioxane (ppb)	н	lerbicide	Metabolites	LC/MS/	MS (ppt	o)	Perf	uoroalkyl S	Substances	(ppt)
Meil ID	Screen Interval (Feet Below Grade)	DTW (Feet Below Grade)	Sample Date	Gross Alpha	Gross Beta	Adjusted Gross Beta* (AGB)	Chloride	Nitrate	Nitrite mg/l N	Sulfate	Ammonia	Bromide	Chlorate	Chloroform	1,4-Dioxane	Acetaminophen	Bisphenol A	Metolachlor Metabolite CGA- 67125	Dichlorvos	Equilin	Didealkyatrazine	Perfluorobutanesulf onic acid (PFBS)	Perfluorohexanesulf onic acid (PFHxS)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)
	C TOGS 1.1.1 Gu			-	-	-	-	-	1	-	-	2	-	-		-	-	-	-	-	-	-	-	-	-
	03 Class GA Gr			-	1,000	-	250	10	1	250	2	-	-	7		-			-		-	-	-	-	-
	Prinking Water S			15	-	50**	250	10	1	250	-	-	-	80	50	50	50	50	50	50	50	50,000	50,000	50,000	50,000
USEPA Health	Advisory Level & PFO	• •	ombined PFOS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	70
SLOS-1	153 - 158	151.3	10/10/2017	<1	1.3 ± 0.1	<1	16	0.45	< 0.05	15	<0.5	0.09	< 0.05	0.7	<0.1	< 0.2	< 0.2	< 0.3	Trace	< 0.7	<0.8	NS	NS	NS	NS
SLOS-1	153 - 158	NA	10/17/2017	NS	NS	-	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<1.77	<1.89	<2.00	<2.00
SLOS-1	160 - 165	151.3	10/10/2017	<1	1.4 ± 0.1	<1	16	0.19	<0.05	7.9	<0.5	0.07	< 0.05	1	<0.1	<0.2	< 0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-1	170 - 175	151.3	10/10/2017	<1	1.7 ± 0.1	<1	16	0.39	< 0.05	15	< 0.5	0.13	< 0.05	0.6	<0.1	<0.2	< 0.2	< 0.3	< 0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-2	150 - 155	150.43	10/11/2017	<1	75 ± 1.4	7.8	56	11	<0.1	27	<0.5	0.16	<0.1	<0.5	<0.1	< 0.2	< 0.2	<0.3	< 0.6	< 0.7	<0.8	NS	NS	NS	NS
SLOS-2	150 - 155	NA	10/17/2017	NS	NS	-	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.04	3.58	3.12	8.5
SLOS-2 DUP	150 - 155	NA	10/17/2017	NS	NS	-	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	5.07	3.16	3.33	8.32
SLOS-2	160 - 165	150.43	10/11/2017	8.3 ± 0.7	126 ± 2.5	<1	114	20	<0.15	32	<0.5	0.28	<0.15	<0.5	<0.1	<0.2	<0.2	Trace	< 0.6	< 0.7	<0.8	NS	NS	NS	NS
SLOS-2	170 - 175	150.43	10/11/2017	5.5 ± 0.4	69 ± 1.4	10	44	5.8	< 0.05	21	<0.5	0.15	< 0.05	NA	<0.1	<0.2	< 0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-3	157 - 162	154.65	10/10/2017	4.4 ± 0.4	66 ± 1.3	11	72	15	< 0.05	59	< 0.5	0.26	< 0.05	<0.5	<0.1	<0.2	< 0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-3	157 - 162	NA	10/16/2017 10/16/2017	NS	NS	-	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	6.11	7.34	2.52	3.11
SLOS-3 DUP SLOS-3	157 - 162 160 - 165	NA 154.65	10/16/2017	NS <1	NS 47 ± 0.9	- 7.6	NS 40	NS 8.9	NS <0.05	NS 41	NS <0.5	NS 0.16	NS <0.05	NS NA	NS <0.1	NS <0.2	NS Trace	NS <0.3	NS <0.6	NS <0.7	NS <0.8	5.23 NS	7.16 NS	2.65 NS	3.32 NS
SLOS-3	170 - 175	154.05	10/9/2017	<1	47 ± 0.9 8.2 ± 0.2	1.6	17	2.5	< 0.05	22	< 0.5	0.10	< 0.05	0.8	<0.1	<0.2	<0.2	< 0.3	< 0.6	<0.7	< 0.8	NS	NS	NS	NS
SLOS-4	145 - 150	142.81	10/11/2017	3.6 ± 0.3	8.2 ± 0.2 27 ± 0.6	4.9	42	7.4	< 0.05	23	< 0.5	0.16	< 0.05	NA	<0.1	<0.2	<0.2	Trace	< 0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-4 SLOS-4	155 - 160	142.81	10/11/2017	2.9 ± 0.2	19 ± 0.0	7.5	59	12	<0.1	27	<0.5	0.10	<0.03	<0.5	<0.1	<0.2	<0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-4 DUP	155 - 160	142.81	10/11/2017	4.2 ± 0.3	18 ± 0.4	7.3	59	12	<0.1	27	<0.5	0.22	<0.1	<0.5	<0.1	<0.2	<0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-4	165 - 170	142.81	10/11/2017	5.1 ± 0.3	33 ± 0.7	10	44	8.9	<0.05	25	<0.5	0.16	<0.05	<0.5	<0.1	<0.2	<0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-5	145 - 150	143	10/12/2017	<1	2 ± 0.1	1	14	0.35	< 0.05	5.2	< 0.5	< 0.05	< 0.05	<0.5	<0.1	<0.2	< 0.2	<0.3	< 0.6	< 0.7	<0.8	NS	NS	NS	NS
SLOS-5	150 - 155	143	10/12/2017	<1	1.3 ± 0.1	<1	10	< 0.1	< 0.05	5.8	< 0.5	< 0.05	< 0.05	NA	<0.1	<0.2	Trace	<0.3	< 0.6	< 0.7	Trace	NS	NS	NS	NS
SLOS-5	160 - 165	143	10/12/2017	<1	1 ± 0.1	<1	9.7	< 0.1	< 0.05	6.4	< 0.5	< 0.05	< 0.05	NA	<0.1	<0.2	< 0.2	< 0.3	Trace	0.9	<0.8	NS	NS	NS	NS
SLOS-5	170 - 175	143	10/12/2017	<1	1.1 ± 0.1	<1	10	0.26	< 0.05	5.3	<0.5	< 0.05	< 0.05	NA	<0.1	< 0.2	< 0.2	< 0.3	< 0.6	0.9	<0.8	NS	NS	NS	NS
SLOS-5 DUP	170 - 175	143	10/12/2017	<1	<1	-	10	0.25	< 0.05	5.3	<0.5	< 0.05	< 0.05	NA	<0.1	<0.2	< 0.2	<0.3	< 0.6	< 0.7	<0.8	NS	NS	NS	NS
SLOS-6	140 - 145	137.02	10/12/2017	<1	2.6 ± 0.1	<1	7.7	0.12	<0.05	6.2	<0.5	< 0.05	< 0.05	NA	<0.1	<0.2	< 0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-6	150 - 155	137.02	10/12/2017	<1	3.8 ± 0.2	1	9.7	0.24	< 0.05	5.4	<0.5	< 0.05	< 0.05	NA	<0.1	<0.2	< 0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-6	160 - 165	137.02	10/12/2017	<1	25 ± 0.7	<1	15	0.24	< 0.05	5.2	1	0.08	< 0.05	NA	<0.1	<0.2	< 0.2	<0.3	< 0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-6	170 - 175	137.02	10/12/2017	7.6 ± 0.6	87 ± 1.7	17	30	<1	<0.5	<30	3.1	<0.5	<0.5	NA	<0.1	<0.2	< 0.2	<0.3	Trace	<0.7	<0.8	NS	NS	NS	NS

Notes

NS = No Sample Collected

ppt =

NA = Sample Collected, Analyte Not Reported

"<" = less than, indicating no detection

DUP = duplicate sample for quality control

ppm = parts per million

ppb = parts per billion ppt = parts per trillion uS = micro siemens *AGB = gross beta - 0.82*potassium conc. in mg/l

**AGB has a guidance activity value of 50 pCi/l that is used for screening under Subpart 5-1 of the NYS Sanitary Code

indicates concentration exceeds a standard or guidance value

pCi = picocurie *** Action Level for public water suppliers for Lead and Copper

	Well I	nformation				Field Pa	rameters												М	etals										
Meil ID	Screen Interval (Feet Below Grade)	DTW (Feet Below Grade)	Sample Date	Conductivity (uS)	Temp (C)	рН	Dissolved Oxygen (ppm)	Turbidity (ntu)	Oxidation-Reduction Potential	Aluminum (ppb)	Arsenic (ppb)	Barium (ppb)	Chromium (ppb)	Cobalt (ppb)	Copper (ppb)	Lithium (ppb)	Manganese (ppb)	Molybdenum (ppb)	Nickel (ppb)	Strontium (ppb)	Thallium (ppb)	Titanium (ppb)	Uranium (ppb)	Vanadium (ppb)	Zinc (ppb)	Calcium (ppm)	Iron (ppm)	Magnesium (ppm)	Potassium (ppm)	Sodium (ppm)
	C TOGS 1.1			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-	-	2,000	-	-	35	-	20
			ater Standards	-	-	-	-	-	-	-	25	1,000	50	-	200	-	300	-	100	-	-	-	-	-	-	-	0.3	-	-	20
	Drinking Wa			-	-	-	-	-	-	-	10	2,000	100	-	1,300***	-	300	-	100	-	2	-	30	-	5,000	-	0.3	-	-	-
USEPA He		ry Level (H. S & PFOA	AL) - Combined	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SLOS-7	140 - 145	139.39	10/16/2017	1,051	21.6	6.08	1.02	5.82	-47	106	2	747	4.4	107	<5	NA	26,211	1.5	36	474	0.53	4.1	18	<1	7.2	124	50	33	23	14
SLOS-7	140 - 145	NA	10/17/2017	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SLOS-7	145 - 150	139.39	10/16/2017	202	16.4	5.81	0.85	6.08	12	217	<1	169	<1	37	<5	NA	4,020	<1	6.6	50	0.32	9.6	<0.5	<1	<5	16	11	3.8	10	5.6
SLOS-7	155 - 160	139.39	10/16/2017	516	15.8	5.59	1.74	2.98	0	92	<1	475	<1	53	<5	NA	5,214	<1	12	118	0.51	3.8	0.9	<1	8.3	37	62	8.9	15	8.1
SLOS-7	165 - 170	139.39	10/16/2017	497	15.8	5.56	1.37	4.33	10	114	1.1	500	<1	53	<5	NA	4,480	<1	15	112	0.38	6.4	1.6	<1	12	34	62	8.5	17	7.9
SLOS-8	145 - 150	143.35	10/17/2017	360	18.2	6.34	2.70	7.6	NA	343	<1	203	1.8	1.3	<5	<1	169	<1	5	157	0.2	25	< 0.5	1	<5	32	0.58	8.2	29	9.8
SLOS-8	150 - 155	143.35	10/17/2017	426	18.0	6.24	1.73	6.11	NA	370	<1	220	1.8	1.1	<5	<1	108	<1	3.7	201	<0.2	27	< 0.5	1	<5	40	0.63	9.3	23	13
SLOS-8	160 - 165	143.35	10/17/2017	514	18.1	6.24	1.10	6.37	NA	259	<1	290	1.6	<1	<5	<1	54	<1	2.8	245	<0.2	17	< 0.5	<1	<5	51	0.47	11	25	16
SLOS-8	170 - 175	143.35	10/17/2017	383	17.8	6.30	1.25	2.71	NA	40	<1	197	2.4	<1	<5	1.1	17	<1	1.3	184	<0.2	3.6	< 0.5	<1	<5	33	<0.1	7.1	33	13
SLOS-9	150 - 155	149.87	10/16/2017	568	19.2	6.30	0.20	14.6	NA	628	<1	148	1.6	23	5.1	NA	7,969	<1	20	296	<0.2	36	0.89	2	6.3	57	1.4	27	5.8	12
SLOS-9	160 - 165	149.87	10/16/2017	471	18.6	6.30	0.25	9.9	NA	630	<1	201	1.6	37	5.2	NA	6,826	<1	8.8	242	<0.2	37	0.74	1.9	7.3	48	8.9	16	9.1	9.7
SLOS-9	170 - 175	149.87	10/16/2017	458	17.6	6.22	0.43	4.97	NA	219	<1	208	<1	7.8	<5	NA	15,291	<1	14	238	<0.2	14	< 0.5	<1	<5	43	0.58	14	13	10
SLOS-10	185 - 190	151.4	10/16/2017	343	18.6	5.99	0.45	0.96	NA	10	<1	90	5.1	<1	<5	1.2	56	<1	3.1	233	<0.2	<1	< 0.5	1.3	34	40	<0.1	11	1.5	12
PR-1	210 - 215	209.81	10/23/2017	323	17.6	5.08	4.22	5.21	269	237	<1	85	4.6	<1	<5	<1	31	<1	4.2	117	0.2	12	< 0.5	<1	<5	10	0.42	7.4	1.9	37
SL-3	210 - 215	204.12	10/23/2017	188	19.5	5.82	1.48	9.92	NA	419	<1	65	4.7	<1	<5	<1	51	<1	5.7	79	<0.2	19	< 0.5	<1	5.7	11	0.77	4.2	2.5	15

Notes

NS = No Sample Collected NA = Sample Collected, Analyte Not Reported ppt = parts per trillion

ppb = parts per billion

uS = micro siemens

"<" = less than, indicating no detection

DUP = duplicate sample for quality control

ppm = parts per million

*AGB = gross beta - 0.82*potassium conc. in mg/l

**AGB has a guidance activity value of 50 pCi/l that is used for screening under Subpart 5-1 of the NYS Sanitary Code indicates concentration exceeds a standard or guidance value

pCi = picocurie *** Action Level for public water suppliers for Lead and Copper

	Well I	nformation		Radi	ologicals (p	oCi/l)			Standar	d Inorganio	cs (ppm)			VOCs (ppb)	1,4 Dioxane (ppb)		Herbicid	le Metabolit	es LC/MS/N	MS (ppb)		Perfi	uoroalkyl S	ubstances	(ppt)
Well ID	Screen Interval (Feet Below Grade)	DTW (Feet Below Grade)	Sample Date	Gross Alpha	Gross Beta	Adjusted Gross Beta* (AGB)	Chloride	Nitrate	Nitrite mg/l N	Sulfate	Ammonia	Bromide	Chlorate	Chloroform	1,4-Dioxane	Acetaminophen	Bisphenol A	Metolachlor Metabolite CGA- 67125	Dichlorvos	Equilin	Didealkyatrazine	Perfluorobutanesulfonic acid (PFBS)	Perfluorohexanesulfonic acid (PFHxS)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)
	C TOGS 1.1			-	-	-	-	-	1	-	-	2	-	-		-	-	-	-	-	-	-	-	-	-
			ater Standards	-	1,000	-	250	10	1	250	2	-	-	7		-			-		-	-	-	-	-
	Drinking Wa			15	-	50**	250	10	1	250	-	-	-	80	50	50	50	50	50	50	50	50,000	50,000	50,000	50,000
USEPA He		ry Level (H/ S & PFOA	AL) - Combined	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	70
SLOS-7	140 - 145	139.39	10/16/2017	22 ± 1.1	34 ± 0.7	15	<75	<2.5	<1.3	<75	1.4	<1.3	<1.3	<0.5	<0.1	Trace	<0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-7	140 - 145	NA	10/17/2017	NS	NS	-	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	3.13	<1.89	5.06	3.19
SLOS-7	145 - 150	139.39	10/16/2017	<1	11 ± 0.4	2.8	<30	<1	<0.5	<30	0.74	<0.5	<0.5	NA	<0.1	<0.2	<0.2	Trace	Trace	<0.7	<0.8	NS	NS	NS	NS
SLOS-7	155 - 160	139.39	10/16/2017	5.8 ± 0.4	17 ± 0.4	4.7	<75	<2.5	<1.3	<75	0.77	<1.3	<1.3	NA	<0.1	Trace	<0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-7	165 - 170	139.39	10/16/2017	6.4 ± 0.4	19 ± 0.5	5.1	<75	<2.5	<1.3	<75	0.86	<1.3	<1.3	<0.5	<0.1	Trace	<0.2	Trace	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-8	145 - 150	143.35	10/17/2017	<1	27 ± 0.5	3.2	19	2.4	< 0.05	13	<0.5	0.08	< 0.05	NA	<0.1	< 0.2	<0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-8	150 - 155	143.35	10/17/2017	1.6 ± 0.2	21 ± 0.4	2.1	29	4.1	< 0.05	16	<0.5	0.11	< 0.05	NA	<0.1	<0.2	<0.2	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-8	160 - 165	143.35	10/17/2017	<1	28 ± 0.8	7.5	42	6.2	< 0.05	19	<0.5	0.15	< 0.05	NA	<0.1	<0.2	Trace	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-8	170 - 175	143.35	10/17/2017	<1	25 ± 0.5	<1	32	2.7	< 0.05	20	<0.5	0.21	< 0.05	NA	<0.1	<0.2	<0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-9	150 - 155	149.87	10/16/2017	2.1 ± 0.2	6.6 ± 0.2	1.8	18	<0.1	< 0.05	14	<0.5	0.16	< 0.05	<0.5	<0.1	< 0.2	<0.2	<0.3	0.7	<0.7	<0.8	NS	NS	NS	NS
SLOS-9	160 - 165	149.87	10/16/2017	4.3 ± 0.3	11 ± 0.3	3.5	<30	<1	<0.5	<30	0.83	<0.5	<0.5	<0.5	<0.1	<0.2	Trace	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-9	170 - 175	149.87	10/16/2017	3.6 ± 0.3	14 ± 0.4	3.3	15	<0.1	< 0.05	13	1.1	0.14	< 0.05	<0.5	<0.1	<0.2	<0.2	Trace	<0.6	<0.7	<0.8	NS	NS	NS	NS
SLOS-10	185 - 190	151.4	10/16/2017	<1	1.8 ± 0.1	<1	14	0.57	0.06	17	<0.5	0.12	< 0.05	<0.5	<0.1	< 0.2	<0.2	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
PR-1	210 - 215	209.81	10/23/2017	<1	1.7 ± 0.2	<1	79	0.49	< 0.05	11	<0.5	0.08	< 0.05	<0.5	<0.1	<0.2	Trace	<0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
SL-3	210 - 215	204.12	10/23/2017	<1	3.1 ± 0.2	1.1	27	2.1	< 0.05	14	<0.5	< 0.05	0.21	2.4	0.12	<0.2	Trace	< 0.3	<0.6	<0.7	<0.8	NS	NS	NS	NS
Notes				ppb = parts	per billion					*AGB = gro	ss beta - 0.82	*potassium o	conc. in mg/l												

NS = No Sample Collected NA = Sample Collected, Analyte Not Reported ppt = parts per trillion

uS = micro siemens

*** Action Level for public water suppliers for Lead and Copper

pCi = picocurie

"<" = less than, indicating no detection DUP = duplicate sample for quality control

ppm = parts per million

**AGB has a guidance activity value of 50 pCi/l that is used for screening under Subpart 5-1 of the NYS Sanitary Code

indicates concentration exceeds a standard or guidance value

APPENDIX

Η

Summary of Detected Analytes 2017 Surface/Pond Samples

Sample In	formation													Metals												
Location ID	Sample Date	Aluminum (ppb)	Antimony (ppb)	Arsenic (ppb)	Barium (ppb)	Beryllium (ppb)	Chromium (ppb)	Cobalt (ppb)	Copper (ppb)	Lead (ppb)	Manganese (ppb)	Molybdenum (ppb)	Nickel (ppb)	Strontium (ppb)	Thallium (ppb)	Thorium (ppb)	Tin (ppb)	Titanium (ppb)	Uranium (ppb)	Vanadium (ppb)	Zinc (ppb)	Calcium (ppm)	Iron (ppm)	Magnesium (ppm)	Potassium (ppm)	Sodium (ppm)
DEC Pa Groundwat Limita	ter Effluent	2,000	6	50	2,000	-	100	-	400	50	600	-	200	-	-	-	-	-	-	-	5,000	-	600	-	-	-
SLSW-1	10/4/2017	48,823	0.81	63	144	1.4	48	12	122	96	591	6.1	27	248	0.32	5.3	1	1821	4.2	71	159	55	33	12	58	9.4
SLSW-1	10/10/2017	20,678	0.7	37	83	0.64	23	6.2	63	51	577	4.5	14	280	<0.2	2.3	0.67	797	2	35	75	71	16	14	61	9.9
SLSW-2	10/4/2017	6,784	0.31	8.3	23	0.22	5.7	1.7	16	7.2	71	2.7	3.4	63	< 0.2	<2	<0.5	275	0.67	11	12	17	5.1	4.6	11	4.1
SLSW-2	10/10/2017	23,683	0.43	24	70	0.68	18	5.9	35	27	498	5.7	11	139	< 0.2	3.5	0.61	979	2.4	35	36	35	17	10	21	8.9
SLSW-3	10/10/2017		0.63	85	34	< 0.2	9.7	4.9	38	14	733	5.3	12	234	< 0.2	<2	< 0.5	167	1.8	14	39	74	5.8	37	230	33
SLSW-4	10/11/2017	23,979	0.88	35	73	0.67	24	5.6	57	47	230	9.3	14	158	<0.2	2.5	0.59	886	2.3	41	74	39	17	8.5	70	13

Notes

"<" = less than, indicating no detection

ppm = parts per million

ppb = parts per billion

pCi = picocurie

(1) No water quality standards have been established by the New York State Department of Environmental Conservation (NYSDEC) for

stormwater. NYSDEC Groundwater Effluent Limits established for analytes detected are indicated for comparison purposes only.

indicates concentration exceeds the NYSDEC Groundwater Effluent Limit

Sample In	formation	Radiologi	cals (pCi/l)	Standard Inorganics (ppm)	VOCs	(ppb)	Chlorinated Pesticides (ppb)			Herbicid	le Metaboli	tes LC/MS/	MS (ppb)		
Location ID	Sample Date	Gross Alpha	Gross Beta	Ammonia	Dimethyldisulfide	Methyl sulfide	Gamma - BHC	Acetaminophen	Bisphenol A	Bisphenol B	Caffeine	Dichlorvos	Diethyltoluamide (DEET)	2-HydroxyAtrazine	Ibuprofen
	rt 703.6 ter Effluent itions ¹	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SLSW-1	10/4/2017	11 ± 0.7	67 ± 1.4	4.8	< 0.5	7.3	0.06	< 0.2	< 0.2	< 0.2	< 0.2	<0.6	0.2	< 0.3	< 0.2
SLSW-1	10/10/2017	3.7 ± 0.3	61 ± 1.1	2.3	2.1	22	0.09	< 0.2	< 0.2	< 0.2	Trace	<0.6	0.2	< 0.3	Trace
SLSW-2	10/4/2017	<1	12 ± 0.4	<0.5	< 0.5	<0.5	< 0.02	<0.2	<0.2	<0.2	< 0.2	<0.6	<0.2	< 0.3	<0.2
SLSW-2	10/10/2017	4.6 ± 0.3	22 ± 0.5	0.5	< 0.5	<0.5	< 0.02	Trace	<0.2	0.7	<0.2	<0.6	<0.2	Trace	<0.2
SLSW-3	10/10/2017	1.3 ± 0.3	130 ± 2.3	<0.5	<2.5	<2.5	< 0.02	Trace	<0.2	<0.2	<0.2	0.9	<0.2	<0.3	<0.2
SLSW-4	10/11/2017	6.1 ± 0.3	70 ± 1.4	<0.5	<0.5	<0.5	0.08	< 0.2	0.2	<0.2	<0.2	0.9	<0.2	<0.3	<0.2

Notes

"<" = less than, indicating no detection

ppm = parts per million

ppb = parts per billion

pCi = picocurie

(1) No water quality standards have been established by the New York State Department of Environmental Conservation (NYSDEC) for

stormwater. NYSDEC Groundwater Effluent Limits established for analytes detected are indicated for comparison purposes only.

APPENDIX

Summary of Detected Analytes 2017 Well Auger Soil Cutting Samples

					М	etals (pj	om)				Vo	latile	Orga	anic A	nalysis	; (ppt))	
Sample ID	Sample Date	Sample Location Descriptions	Sample Type	Aluminum	Calcium	Iron	Magnesium	Manganese	Potassium	Sodium	Zinc	Trichlorofluoromethane	Acetone	Methyl ehtyl ketone	Toulene	Tetrachloroethene	n-Butyl acetate	Total Xylene
	NYS DEC	Table 375-6.8(b) Soil Cleanup Objectives (Protection of Groundwater)		-	-	-	-	2,000	-	-	2,480	-	50	120	700	1,300	-	1,600
	NYSDE	C Part 375 Unrestricted Use Guidelines		-	-	-	-	1,600	-	-	109	-	50	120	700	1,300	-	260
SLAC-A	10/11/2017	Auger Soil Cuttings of SLOS-7 @ 20' to 30'	Solid	1,520	356	2,090	315	<50	265	165	<50	<4	<20	<4	<4	<4	<4	<4
SLAC-B	10/11/2017	Auger Soil Cutting of SLOS-9 (85' to 110')	Solid	8,680	1,010	14,100	2,350	233	1,430	164	<50	<4	<20	<4	5	5	<4	<4
SLAC-C	10/12/2017	Auger Soil Cutting of SLOS-9 (~20')	Solid	10,600	5,180	12,100	1,900	145	821	152	<50	5	<20	<4	<4	6	<4	<4
SLAC-D	10/18/2017	Auger Soil Cuttings from SLOS-6	Solid	6,750	2,910	6,260	1,390	87.8	434	274	63.5	<4	<20	11	4	6	8	6
SLSD-A	10/4/2017	Vicinity of SLOS-1	Solid	3,790	4,670	4,120	1,240	97	2,160	229	<50	<4	72	<4	<4	<4	<4	<4
SLSD-B		Vicinity of SLOS-2	Solid	1,640	2,000	2,070	564	53.5	557	144	<50	<4	<20	<4	<4	<4	<4	<4
SLSD-C		Vicinity of SLOS-3	Solid	2,480	1,420	2,720	511	54.2	409	160	<50	<4	<20	<4	<4	<4	<4	<4
SLSD-D	10/5/2017	Vicinity of SLOS-3	Solid	2,000	1,410	2,320	512	50.1	498	165	< 50	<4	<20	<4	<4	<4	<4	<4
SLSD-E		Vicinity of SLOS-4	Solid	2,260	1,030	2,750	4,090	<50	394	136	<50	<4	<20	<4	<4	<4	<4	<4
SLSD-F		Vicinity of SLOS-5	Solid	8,790	1,230	6,590	1,030	84.1	466	100	<50	<4	<20	<4	8	10	<4	5
SLSD-G		Vicinity of SLOS-6	Solid	3,930	3,260	3,850	965	96	1,330		<50	<4	<20	<4	5	5	5	4
SLSD-H		Vicinity of SLOS-7	Solid	3,190	3,080	3,770	847	73.9	892	152	<50	<4	<20	<4	<4	<4	<4	<4
SLSD-I	10/12/2017	Solid	5,580	25,200	7,930	16,000	109	528	248	<50	<4	<20	<4	<4	<4	<4	<4	
SLSD-J	10/12/2017	Vicinity of SLOS-9	Solid	6,350	2,320	6,340	1,110	83.9	489	128	<50	<4	<20	<4	8	9	<4	<4

Notes

"<" = less than, indicating no detection

ppm = parts per million

ppb = parts per billion

indicates concentration exceeds a standard or guidance value

APPENDIX

J

Well Drilling Completion Reports

	N	EW YORK DEPARTM	IENT OF E	NVIRONMEN [®]	TAL CONSER		N40.970994
County	Suffolk	SL-1		201	50078	Longitude Well Number	W072.341638 S-134080
		TION REPO	ORT-LO			/ELL	
OWNER							LOG
ADDRESS	Suffolk Co	unty Departme	nt of He	ealth Serv	ices		Ground Surface
	360 Yapha	nk Ave; Suite	1C; Yap	hank, Ne	w York 1	1980	EL. Ft. above sea
	DF WELL						<u> </u>
	INE HIGWAY	/, BRIDGEHAMP		to Groundwat	er From Surfa		TOP OF WELL
Deptil of We	250'		206'				
		CASING					
Diameter 2''	in.l	in.		in.		in.	
Length							0-1' CEMENT
245'	ft.	ft.		ft.		ft.	
SEALING				OPENINGS			
		SCREEN		1			┨ │ │ │ │
Make				OPENINGS			
Johnson Diameter				10slo	ot		
2"	in.	in.		in.		in.	240'
Length	<i>t</i>	<i>t</i> +		4		4	
5' DEPTH TO 1	ft. OP FROM TOP (ft.		ft.		ft.	┨││╎┌┶╼╼┷┑╷
DATE		PUMP T	EST	TEST OR PE			
DATE				TEST OR PE	RMANENTP	UMP	
DURATION	OF TEST			MAXIMUM D	ISCHARGE		250'
	days EL PRIOR TO TE	et.	hours			gallons per min. M PUMPING	
	ft.	.01	in.		ft.	in.	
MAXIMUM D	RAWDOWN			Approx. time	of return level	after of pumping	1
		PUMPING INSTALLE	ft.		hour	'S min.	4
TYPE			.0		MODEL NU	MBER	┨│ ┞─┬──┬──
MOTIVE PO	WER	MAKE			H.P.		
Capacity							4
		g.p.n	n.against		ft. of (discharge head	s
NUMBER OF	BOWLS OR ST	AGES					C C
						ft. of total head	
	DROP LINE			B IAL		INE	
DIAMETER				DIAMI in.	TIEK	in.	
Length				Lengtl	า		
				ft.		in.	
METHOD OF	 DRILLING Cable too 	ol other	AUG		OF WATER		m
WORK STAF	RTED			COMF	PLETED		
5/26/2015			5/26	/2015			5'
DATE 5/26/2015		uis Velasquez			REGI	STRATION NO. 1854	
							┨↓↓││
	-	rials encountered with		-		-	
		g screen pump additio ctions as to Well Drillo		-		nterest.	

	Ν	IEW YORK DEPARTM	ENT OF E	NVIRON	IMENTAL C	ONSERVA			971179		
County	Suffolk	SL-2			2015007	a	Longitude Well Number			216	
			RT-L	ONG				0-10	+001		_
OWNER								1	L	CG	
	Suffolk Co	unty Departme	nt of He	ealth S	Services			Grou	nd Surfa	ace	
ADDRESS	360 Yapha	ank Ave; Suite ²	IC; Yap	bhank	, New Yo	ork 119	80	EL.	F	t. above sea	
LOCATION	OF WELL										
		Y, BRIDGEHAMP				<u> </u>				ft.	_
Depth of we	ell Below Surface 250'		Deptr 205'	to Grou	ndwater Fro	m Surrace		•		DF WELL	0-150'
	200	CASING									Fine to
Diameter	. 1	. 1			. 1						coarse
2" Length	in.	in.			in.		in.				sand tan
245'	ft.	ft.			ft.		ft.				lan
SEALING	•			OPENI	NGS						
		SCREEN									
Make		JOREEN		OPEN	NINGS						
Johnson					10slot						
Diameter 2"	in.	in.			in.		in		240'		
∠ Length							in.	· '			
5'	ft.	ft.		-	ft.		ft.				150-180'
DEPTH TO	TOP FROM TOP	OF CASING									silty with
		PUMP TE	ST								clay gray
DATE				TEST C	DR PERMAN	IENT PUM	Р				9. <i>~</i> ,
								250			
DURATION	OF TEST days		hours		IUM DISCHA		allons per min.	200			
STATIC LE	/EL PRIOR TO TI	EST				-					
	ft.		in.		ft.		in.				
	DRAWDOWN		ft.	Approx	. time of retu	hours	er of pumping min.				
		PUMPING INSTALLE	D								
TYPE		MAKE			MOE	DEL NUMB	ER				100.050
MOTIVE PC	WER	MAKE			H.P.					s c	180-250' fine to
Ossasita										r	coarse
Capacity		a.p.m	against			ft. of disc	charge head			e	sand tan
NUMBER O	F BOWLS OR ST						0			n	
						f	. of total head		¥		
									5'	s	
	DROP LINE				SUC		E		[<u>]</u>	u	
DIAMETER					DIAMETER					m p	
Length				in.	Length		in.				
-				ft.	Longin		in.		T		
METHOD O					USE OF WA	TER					
rotary WORK STA	Cable to	ol other	AUG		COMPLETE	D					
5/27/2018			5/27	/2015		·			5'		
DATE	DRILLER						RATION NO.				
5/27/2018		uis Velasquez.					854				
*NOTE: Sho	w log of well mate	erials encountered with	depth bel	ow grour	nd surface w	ater bearin	g beds	▼	*	+	
		ng screen pump additio	• •	•		ters of inte	rest.				
Describe rep	pair job. See instru	uctions as to Well Drille	rs Regula	tion and	Reports.			1			

		NEW YORK DEPARTME	NT OF E	NVIRON	MENTAL CONSERVATI	ON Latitude Longitude	N40.97		152	
County	Suffolk	SL-3			20150080	Well Number				
_	COMPL	ETION REPO	RT-LO	ONG	ISLAND WEL	.L				
OWNER					a			LC	-	
		ounty Departmer	t of He	ealth	Services		Ground	1 Surfa	ce	
ADDRESS		nank Ave; Suite 1	C: Yar	bhank	. New York 1198	0	EL.	Ft	. above sea	
LOCATION	NOF WELL		-,			-		<u> </u>		
		AY, BRIDGEHAMPT							ft.	_
Depth of W	/ell Below Surface 250')	Depth 205'	to Grou	undwater From Surface				F WELL	0-30"
	230	CASING	205							hard pa
Diameter										silt .
2"	in.	in.			in.	in.	4			dark gra
Length 245'	ft.	ft.			ft.	ft.				
SEALING	1.	11.		OPEN						30-90'
										fine to
		SCREEN		0.55	NINCO					coarse
^{Make} Johnson				OPE	NINGS 10slot					sand tan
Diameter	1			•				240'		
2"	in.	in.			in.	in.	L └	2-10		
Length	<i>n</i>	<i>a</i>			<i>n</i>	6 1				00.450
5' рертн то	ft. TOP FROM TOP				ft.	ft.	4			90-150 silty wit
		OI CASING								clay
		PUMP TES	БТ	1						present
DATE				TEST	OR PERMANENT PUMP					gray
DURATION	N OF TEST			MAXIN	MUM DISCHARGE		250'	ן וך		150-250
Donathol	days		hours			lons per min.				fine to
STATIC LE	EVEL PRIOR TO	TEST		LEVE						coarse
	ft.		in.	A	ft.	in.				sand
MAXIMUM	DRAWDOWN		ft.	Approx	k. time of return level after hours	of pumping min.				tan
		PUMPING INSTALLED		I	licaro					
TYPE		MAKE			MODEL NUMBE	R				
	014/50				H.P.				S C	
MOTIVE P	OWER	MAKE			H.P.				r	
Capacity					I				е	
			against		ft. of disch	arge head			e n	
NUMBER (OF BOWLS OR S	TAGES	I		"	of total head				
					п.				s	
					1			5'		
	DROP LINE						┫║╵		m	
DIAMETER	र			in.	DIAMETER	in.			<u>p</u>	
Length					Length					
-				ft.	_	in.				
		(ma) – a			USE OF WATER					
rotary WORK ST/	cable	tool other	AUG	ιEΚ	COMPLETED		4			
6/2/20			6/2	2/2015				5'		
DATE	DRILLER			1	REGISTR	ATION NO.	1	-		
6/2/201	15	Luis Velasquez			18	54				
		terials encountered with c	onth hal-	w are		ode	┨ ↓	♦		
	-	ing screen pump addition		-	-		1			
1				-			1			

Describe repair job. See instructions as to Well Driller's Regulation and Reports.

	0	NEW YORK DEPARTME	INT OF ENVIRO		Longitude		40083	
County	Suffolk	SL-4		20150093	Well Number	5-13408	3	
OWNER							LOG	٦
	Suffolk C	County Departmer	t of Health	Services		Ground Su	ırface	
ADDRESS	360 Yapł	nank Ave; Suite 1	C; Yaphanl	k, New York 11	980	EL.	Ft. above sea	
	OF WELL							-
	ell Below Surface	AY, BRIDGEHAMPT		undwater From Surfac	ce	TOP	P OF WELL	
	240'	-	201'					0-10'
D		CASING						hard
Diameter 2''	in.	in.		in.	in.			pan gray
Length								g.∝y
235'	ft.	ft.		ft.	ft.			
SEALING			OPEN	NINGS				10-150
		SCREEN						fine to
Make			OPE	ENINGS				coarse
Johnson Diamatar				10slot		┫╎┌─┴		sand
Diameter 2"	in.	in.		in.	in.	23	0'	tan
Length								
5'	ft.	ft.		ft.	ft.			
DEPTH TO	TOP FROM TO	P OF CASING						150-16 silty
		PUMP TES	ST I					gray
DATE			TEST	OR PERMANENT PL	IMP			
DURATION	OF TEST		MAXI	MUM DISCHARGE		240'		
	days		hours		gallons per min.			160-24
STATIC LE	VEL PRIOR TO	TEST	in.	EL DURING MAXIMUI ft.	M PUMPING in.			fine to coarse
MAXIMUM	DRAWDOWN			x. time of return level				sand
			ft.	hour	s min.			tan
TYPE		PUMPING INSTALLED		MODEL NUM				
TTPE		MAKE			NBER		s	
MOTIVE PO	OWER	MAKE		H.P.			C	
Capacity							e l	
Capacity		g.p.m.	against	ft. of c	lischarge head		e	
NUMBER C	OF BOWLS OR S	STAGES	I				n	
					ft. of total head	┨│ 牪		
						5'		
	DROP LINE			SUCTION L	INE		<u>m</u>	
DIAMETER			in.	DIAMETER	in		<u> </u>	
Length				Length	in.	┨ │ ↓		
-			ft.	-	in.	🛉		
		tool 🗖 d		USE OF WATER				
rotary WORK STA		tool other	AUGER	COMPLETED		1		
6/8/201			6/8/2015			5'		
DATE	DRILLER			REGI	STRATION NO.	▋│└┬		
6/8/201	5	Luis Velasquez			1854			
*NOTE: Sho	ow log of well ma	aterials encountered with c	lepth below grou	nd surface water bear	ing beds	1 * *	<u> </u>	
and water le	evels in each cas	sing screen pump addition	al pumping test a	and other matters of in	terest.			

Describe repair job. See instructions as to Well Driller's Regulation and Reports.

	N	EW YORK DEPART	MENT OF E	NVIRONMEI	NTAL CONSE			N40.9714		
County	Suffolk	SL-4S		202	150124			W072.3 S-13408		
		TION REPO	ORT-LO					• -• •••		
OWNER								1	LOG	
	Suffolk Co	unty Departme	ent of He	ealth Ser	vices			Ground St	urface	
ADDRESS	360 Vanha	nk Ave; Suite	1C·Var	hank N	ow Vork	11080		EL.		
LOCATION	OF WELL	TIK Ave, Suite	то, тар	Jiank, IN	EW IUK	11900		EL	Ft. abov	e sea
		, BRIDGEHAMF								-ft.
Depth of We	Il Below Surface				ater From Sur	face			P OF WEL	L T
	220'	CASING	202.0	J				 1 T		
Diameter					1					
2" Length	in.	in.		in.		in.				
215'	ft.	ft.		ft.		ft.	l		0-1' CEN	1ENT
SEALING	•			OPENINGS	1		•	1		
		SCREEN								
Make		SCREEN		OPENING	S					
Johnson				10s	lot			▋│┌─┴		
Diameter 2''	in.	in.		in.	I	in.	I	21	.0'	
Length					<u> </u>		ļ			
5'	ft. FOP FROM TOP (ft.		ft.		ft.				
DEPTHIO		DF CASING								
		PUMP T	EST							
DATE				TEST OR P	ERMANENT	PUMP				
DURATION	OF TEST			MAXIMUM	DISCHARGE			220'		
	days		hours			gallons pe	r min.			
STATIC LEV	EL PRIOR TO TE ft.	ST	in.	LEVEL DU	RING MAXIM		Gin.			
MAXIMUM D				Approx. time		el after of pun				
			ft.		hou	•	min.			
			ED					┨│ ┞		
TYPE		MAKE			MODEL N	UMBER				
MOTIVE PO	WER	MAKE			H.P.					
0										
Capacity		anı	m.against		ft o	f discharge he	ad		6	
NUMBER OF	BOWLS OR ST					, alcontaige ne			S C	
						ft. of total	head	. ↓	r	_
								▋│┌┴	e	-
	DROP LINE				SUCTION	LINE		5'		1
DIAMETER					IETER					
Length				in. Leng	ıth		in.	┫ │ ⊥		-
Longui				ft.			in.		<u>s</u>	+
METHOD OF		_		USE	OF WATER				m	
rotary WORK STAI	Cable too	ol othe	r AUG		IPLETED				р	
8/6/2015	5		8/6	/2015				5'		
DATE	DRILLER	:-) <i>(-</i>)	-		REC	GISTRATION	NO.			
8/6/2015		uis Velasquez				1854				
*NOTE: Sho	w log of well mate	rials encountered with	h depth belo	ow ground su	rface water be	earing beds	•	 ★ ★	_	-
		g screen pump additi		-		f interest.				
Describe rep	air job. See instru	ctions as to Well Drill	er's Regula	tion and Rep	orts.					

				NMENTAL CONSE				.97168		
Suffolk	SL-5			20150094	W	ongitude ell Number			39705	
COMPLE	ETION REPO	RT-L	ONC	SISLAND	WELL					
Suffolk Co		t of U	aalth	Sonvicos			0			
SUIIOK CO	unity Departmen		Jaili	Services			Grou	ina Su	rrace	
	nk Ave; Suite 1	C; Yap	bhan	k, New York	11980		EL		_Ft. abo	ve sea
	Y, BRIDGEHAMPT	ON								—ft.
			to Gro	undwater From Su	face			TOP	OF WE	LL
260'		199.	23'				↑	1		
	CASING									
inl	in			in	in	I				
						•				
ft.	ft.			ft.	ft.					
			OPEN	IINGS			1			
	CODEEN									
	SCREEN		OPF	NINGS						
				10slot						
1							1	250	י'נ	
in.	in.			in.	in					
<i>a</i> 1	<i>a</i> 1			6 I						
				π.	π.					
OF FROM TOP (OF CASING									
	PUMP TES	π	•				1			
			TEST	OR PERMANENT	PUMP					
							260	0'		
		hours				er min.				
	ST		LEVE	L DURING MAXIN	<u> </u>		1			
ft.		in.		ft.		in.				
RAWDOWN		"	Appro		-					
		-		no	urs	min.				
,				MODEL N	IUMBER					
									s	
VER	MAKE			H.P.					C	
									e	
	g.p.m.a	against		ft. c	of discharge h	ead				
BOWLS OR ST	AGES	1			ft of total	hood				
		I				neau		ľ	s	
				SUCTION				5'] u m	-
				DIAMETER			1		p	
			in.			in.				_
			f+	Length		:			_	_
DRILLING			11.	USE OF WATER		In.		Ī		
	ol other	AUG	ER							
				COMPLETED						
I		6/9	/2015					5'		
DRILLER L	uis Velasquez			RE		NO.		Τ	-	
					1854					
	COMPLE Suffolk Co 360 Yapha FWELL INE HIGWA Below Surface 260' in. ft. ft. ft. ft. ft. ft. ft. FOP FROM TOP O FTEST days EL PRIOR TO TE ft. RAWDOWN MER FOR TO TE ft. COP FROM STA	COMPLETION REPORTION Suffolk County Departmen 360 Yaphank Ave; Suite 10 >F WELL INE HIGWAY, BRIDGEHAMPT Below Surface 260' CASING in. ft. rest oays EL PRIOR TO TEST ft. RAKE MAKE NER MAKE g.p.m.a BOWLS OR STAGES DROP LINE DROP LINE	COMPLETION REPORT-LO Suffolk County Department of He 360 Yaphank Ave; Suite 1C; Yap OF WELL INE HIGWAY, BRIDGEHAMPTON IBelow Surface Depth 260' 199.3 CASING in. in. in. ft. ft. ft. ft. op FROM TOP OF CASING OF FROM TOP OF CASING DF TEST days hours EL PRIOR TO TEST ft. in. RAWDOWN ft. PUMPING INSTALLED MAKE NER MAKE IBOWLS OR STAGES I IDROP LINE Other IDRILLING I ICable tool Inter	COMPLETION REPORT-LONC Suffolk County Department of Health 360 Yaphank Ave; Suite 1C; Yaphan Depth to Gro Depth to Gro 260' 260' CASING in. In.						

County	Suffolk	SL-6		201	50172	Longitude Well Number		347740	
			RT-LON						
OWNER		unty Departmen					Ground S	LOG Surface	7
ADDRESS		ank Ave; Suite 10				980	EL.	Ft. above sea	
LOCATION O			o, rapit				<u> </u>		
MILSTONE	ROAD, BRI	DGEHAMPTON						ft.	
Depth of Well	Below Surface				er From Surface		ТС	OP OF WELL	0.70
	210'	CASING	16	2.25			i 1		0-70' silty
Diameter		er tente							sand
2"	in.	in.		in.		in.			gray
Length	"	<i>u</i>			I	<i>a</i>			
205' SEALING	ft.	ft.	0	ft. PENINGS		ft.			
OE/ LINO				Linitoo					
		SCREEN	1						
Make				OPENINGS 10sl					70-140'
Johnson Diameter			1	105	01			00'	silty with
2"	in.	in.		in.		in.			clay
Length	6 I	.		<i>a</i> 1		6 I			gray
5' DERTH TO TO	ft.	ft.		ft.		ft.			
	OF TROM TOP O	I CASING							
		PUMP TES	Т						
DATE			TE	ST OR PER	RMANENT PUM	Ρ			140-210
DURATION O	FTEST		M		SCHARGE		210'		fine to coarse
	days		hours			gallons per min.			dark tan
STATIC LEVE	EL PRIOR TO TES	T		EVEL DUR		_			
MAXIMUM DF			in.	prov timo c	ft. of return level aft	in.			
			ft.	prox. unie c	hours				
		PUMPING INSTALLED							
TYPE		MAKE			MODEL NUM	BER		s	
MOTIVE POW	/ER	MAKE			H.P.			C r	
Capacity		g.p.m.a	gainst		ft of di	scharge head		e e	
NUMBER OF	BOWLS OR STA							n	
						ft. of total head			
	DROP LINE				SUCTION LI	NE	5		
DIAMETER			i	DIAN	1ETER	in.		p	
Length			ft	Leng	th	in.			
METHOD OF	DRILLING	_		USE	OF WATER				
rotary WORK STAR	Cable to	ol other	AUGER						
10/16/2015			10/16/2		IPLETED				
DATE	DRILLER		,		REGIS	TRATION NO.			
10/16/2015	5 L	uis Velasquez				1854			
*NOTE: Show	log of well materi	als encountered with dep	th below gro	ound surface	e water bearing b	beds	╡┿╶┥		
and water leve	els in each casing	screen pump additional p	oumping test	t and other r	matters of interes				
Describe repa	ir job. See instruc	tions as to Well Driller's F	Regulation a	nd Reports.				_	

ORIGINAL- Environmental Conservation Copy

		NEW YORK DEPARTMEN	NT OF E	NVIRON	MENTAL CO	ONSERVATION		N40.9			
County	Suffolk	SL-7			2015017	'1	Longitude Well Number		2.348	3440	
		ETION REPOR	RT-LO	ONG							—
OWNER									L	OG	
ADDRESS	Suffolk C	ounty Department	t of He	ealth S	Services			Groun	d Surf	ace	
ADDRESS	360 Yapł	nank Ave; Suite 10	: Yar	hank	New Yo	ork 11980		EL.	F	t. above sea	a
LOCATION	OF WELL		<i>, 14</i>	indint,	1101110				<u> </u>	00000 300	
		IDGEHAMPTON								ft.	
Depth of We	ell Below Surface		•		ndwater Fror	n Surface				DF WELL	0.00
	210'	CASING	156.3	35				l î	T		0-80' silty
Diameter											sand
2"	in.	in.			in.		in.				gray
Length	1	1			1						
205'	ft.	ft.			ft.		ft.				
SEALING				OPENIN	IGS						
		SCREEN		I							
Make				OPEN	INGS			1			
Johnson					10slot			_			80-160'
Diameter	.	. 1							200'		silty
2"	in.	in.			in.		in.				with clay
Length 5'	ft.	ft.			ft.		ft.				dark gra
	TOP FROM TOP				n.		1.				
		PUMP TES	Т								
DATE				TEST O	R PERMAN	ENT PUMP					
	OFTEST				JM DISCHA	PCE		210'			160-210
DURATION	days		hours				s per min.				silty
STATIC LEV	/EL PRIOR TO T	EST		LEVEL	DURING M						sand
	ft.		in.		ft.		in.				gray
MAXIMUM E	DRAWDOWN			Approx.	time of retu	rn level after of p	oumping				
			ft.			hours	min.				
TYPE		PUMPING INSTALLED			МО	DEL NUMBER					
										s	
MOTIVE PO	WER	MAKE			H.P					c	
										r	
Capacity			[e e	
	F BOWLS OR ST	g.p.m.a	igainst			ft. of discharç	je head			n	
NOMBER	I BOWES OR SI	AGEO	1			ft. of t	otal head		Ļ		
									Ť		
									5'	<u>u</u>	
DIAMETER	DROP LINE									<u> </u>	
				in.			in.			<u>⊢</u> ₽	
Length					Length				¥		
METHOD O	F DRILLING			ft.	USE OF W	ATER	in.		Î		
rotary	cable	tool other	AUG	ER							
WORK STA			10/4	E/2045	COMPLET	ED					
10/15/201 DATE	DRILLER		10/1	5/2015		REGISTRAT	ION NO.		5'		
10/15/201	15	Luis Velasquez				1854					
		erials encountered with de	nth hala	N Ground	ourfood	or booring had-		↓	♦		
	-	eriais encountered with de ng screen pump additional	•	-		•					
		uctions as to Well Driller's I									

		NEW YORK DEPARTMEN	T OF E	NVIRON	MENTA	AL CONSERVATION			973924	407	
County	Suffolk	SL-8			2015	50170	Longitude Well Number		(2.349	427	
		LETION REPOR	T-LO	ONG							_
OWNER	•••••							I	LC	JG	٦
	Suffolk C	County Department	of He	ealth S	Servio	ces		Grou	nd Surfa	ace	
ADDRESS	360 Yap	hank Ave; Suite 1C	· Yar	hank	New	v York 11980		EL.	F	t. above sea	
LOCATION C	DF WELL		, rup	/nariix,	1101			<u> </u>	<u> </u>		-
		RIDGEHAMPTON								ft.	_
Depth of Well	Below Surface)	•		ndwater	r From Surface			TOP C	DF WELL	0.00
	200'	CASING	113.6	501				I Î	T		0-60' silty
Diameter		CASING									sand
2"	in.	in.			in.		in.				gray
Length		· · · · · ·									
195'	ft.	ft.		1	ft.		ft.				
SEALING				OPENII	NGS						00.001
		SCREEN		l							60-90' silty with
Make		SCILLIN		OPEN	IINGS						clay
Johnson					10slc	ot					gray
Diameter		1							190'		
2"	in.	in.			in.		in.				
Length	<i>a</i> 1	<i>a</i>			<i>e</i> , 1		<i>u</i>				00.4.40
5' DERTH TO T	ft. OP FROM TOF				ft.		ft.				90-140' sand with
DEFINIOT		OFCASING									silt
		PUMP TEST		•							gray
DATE				TEST C	R PER	MANENT PUMP					
								200	<u>,</u>		
DURATION C			houro	MAXIM	UM DIS	CHARGE		200	<u></u>		
STATIC I EVI	days EL PRIOR TO T	TEST	hours	LEVEL	DURIN		ns per min. PING				
	ft.		in.			ft.	in.				140-200'
MAXIMUM DI	RAWDOWN			Approx.	time of	return level after of	pumping	1			silty with
			ft.			hours	min.				clay
		PUMPING INSTALLED									gray
TYPE		MAKE				MODEL NUMBER				s	
MOTIVE POV	VER	MAKE				H.P.				C C	
										r	
Capacity								1		e e	
		g.p.m.ag	gainst			ft. of dischar	ge head			n l	
NUMBER OF	BOWLS OR S	TAGES	I			<i>t c t</i>	total baad				
						11. 01	total head				
									5'	<u>s</u> u	1
DIAMETER	DROP LINE				DIAME	SUCTION LINE			ц		
DIAIVIETER				in.		LIER	in.		-	 p 	
Length					Length	ו		1	↓ .		
				ft.			in.		A		
METHOD OF		tool other	AUG	FR	IDSE C	DF WATER					
WORK STAR			1		COMF	PLETED		1			
10/14/201 DATE			10/1	4/2015		REGISTRAT			5'		1
10/14/201	DRILLER 5	Luis Velasquez				1854			Τ		1
		•						↓ ↓	↓		1
	-	terials encountered with dep		-		-					1
		ing screen pump additional p ructions as to Well Driller's R				matters of interest.		1			1
Describe repa			oguiail		opuits.			1			

		NEW YORK DEPARTMENT	OF E	NVIRON	MENT	AL CONSERVATI	ON Latitude Longitude	N40.97			
County	Suffolk	SL-9			201	50201	Well Number		2.340	013	
	COMPL	ETION REPOR	T-L(ONG	ISL	AND WEL	L				_
OWNER									L(JG	7
ADDRESS	Suffolk C	ounty Department	of He	ealth S	Servio	ces		Ground	d Surfa	ace	
	360 Yapł	nank Ave; Suite 1C;	Yap	hank.	New	v York 11980)	EL.	F	t. above sea	
	OF WELL										-
	Y CLUB/MILS ell Below Surface	TONE ROAD, BRIDG				r From Surface		-		ft. DF WELL	_
	230'		185.		anato			•	<u> </u>		0-90'
		CASING									fine to
Diameter		. 1									coarse
2" Longth	in.	in.			in.		in.				sand tan
Length 225'	ft.	ft.			ft.		ft.				lan
SEALING				OPENIN							
		SCREEN						4			
_{Make} Johnson				OPEN	INGS 10slo	ht					90-140'
Diameter	1			1	1031						silty sand
2"	in.	in.			in.		in.				gray
Length		. 1									
5'	ft.	ft.			ft.		ft.				
DEPTHTO	TOP FROM TOP	OF CASING									140-170
		PUMP TEST									silty
DATE				TEST O	R PER	MANENT PUMP					clay gray
								230'	<u>ا</u> ۲		
DURATION	OF TEST days		boure	MAXIMU	JM DIS	SCHARGE	llons per min.	230			
STATIC LEV	/EL PRIOR TO T	EST	hours	LEVEL	DURI	NG MAXIMUM PU		1			
	ft.		in.		-	ft.	in.				170-230
MAXIMUM C	DRAWDOWN			Approx.	time o	f return level after	of pumping			I	fine to
			ft.			hours	min.				coarse
TYPE		PUMPING INSTALLED MAKE				MODEL NUMBE	D				_sand tan
		WARE					IN .			s	lan
MOTIVE PO	WER	MAKE				H.P.				c	
										r	
Capacity						ft of diad	area haad			e e	
	F BOWLS OR ST	g.p.m.aga GAGES	ansi j				harge head			n	
						ft.	of total head		↓		
										s	
	DROP LINE					SUCTION LINE			5'	u	
DIAMETER					DIAM	ETER			T.	- <u>m</u> p	
Longth				in.	Longt	L.	in.				
Length				ft.	Lengt		in.		¥		
					USE (OF WATER		1			
rotary WORK STA	Cable RTED	tool other	AUG	ER		PLETED					
10/29/201	15		10/2	9/2015	0.0101				5'		
DATE	DRILLER						RATION NO.	1 '	$\overline{+}$		
10/29/201	15	Luis Velasquez				18	354				
*NOTE: Sho	w log of well mate	erials encountered with dept	n belov	v ground	surfac	e water bearing be	eds	1 ▼	_	┼──┤	
		ng screen pump additional p		-			t.	I			
Describe rep	oair job. See instru	uctions as to Well Driller's Re	gulatio	on and Re	eports.			1			

		NEW YORK DEPARTMENT	OF E	NVIRON	MENTAL CO	ONSERVATION			71796		
County	Suffolk	SL-10			2015020)3	Longitude Well Number		2.347	138	
		ETION REPOR	T-L(ONG							
OWNER									L	OG	٦
	Suffolk C	County Department	of He	ealth S	Services			Grour	nd Surf	ace	
ADDRESS	360 Yapl	hank Ave: Suite 1C:	Yar	hank.	New Yo	ork 11980		EL.	F	- t. above sea	
LOCATION C	DF WELL	hank Ave; Suite 1C;	100	nan,	1101110			<u> </u>	<u> </u>		-
		RIDGEHAMPTON	<u> </u>			<u> </u>				ft.	4
Depth of Wei	ll Below Surface 210'		•	178.72	ndwater From	n Surface			10P (0-90'
	210	CASING		110.12							silty sa
Diameter		ı									fine
2"	in.	in.			in.		in.				mediur
₋ength 205'	ft.	4			f +		ff				tan-gra
205 SEALING	11.	ft.		OPENIN	ft.		ft.				
		SCREEN						1			1
Make				OPEN							
Johnson					10slot					⊥_	00 400
Diameter 2''	in.	in.			in.		in.		200'		90-130 silty
z Length								1		T	with
5'	ft.	ft.			ft.		ft.				clay
DEPTH TO T	TOP FROM TOP	P OF CASING									gray
DATE		PUMP TEST		TEST O		ENT PUMP					
DATE											
DURATION (OF TEST			ΜΑΧΙΜ	JM DISCHA	RGE		210			130-21
	days		hours			Ş	ns per min.				fine to
STATIC LEV	EL PRIOR TO T ft.	EST	in.	LEVEL	DURING M	AXIMUM PUMP	in.				loose
	RAWDOWN		II 1.	Approx		rn level after of					sand tan
			ft.	, pprox.		hours	min.				tur i
		PUMPING INSTALLED									
TYPE		MAKE			MC	DEL NUMBER					
	MED	MAKE			H.F	1				S C	
NOTIVE POL	NER	MARE				•				r	
Capacity			1							e	
		g.p.m.aga	ainst			ft. of dischar	ge head			e n	
NUMBER OF	BOWLS OR S	TAGES									
						ft. of	total head		*		
									5'		
	DROP LINE					CTION LINE		1		m	
DIAMETER				in.	DIAMETER	{	in.			┝━│	
_ength					Length				¥	<u> </u>	
				ft.			in.		A		
METHOD OF ∏rotary		tool	AUG	ER	USE OF W	AIEK					
WORK STAF	RTED				COMPLET	ED		1			
11/2/201 DATE	5 DRILLER		11/	/2/2015		REGISTRAT			5'		1
11/2/201		Luis Velasquez				1854			Τ		1
		•						↓	↓		
	-	terials encountered with deptl		-		-	-		•		
		ng screen pump additional pu ructions as to Well Driller's Re		-		ers of interest.					

	Ν	EW YORK DEPARTM	ENT OF E	NVIRONM	ENTAL CON	SERVATION		40.9			
County	Suffolk	SLOS-1		2	20170121		Longitude Well Number		94 I 170121		
		ETION REPO	RT-L	ONG IS	SLAND	WELL					_
OWNER					_				LC)G	
	Suffolk Co	unty Departme	nt of He	ealth Se	rvices			Grour	nd Surfa	ace	
ADDRESS	360 Yanha	ank Ave; Suite ²	IC [.] Yar	hank N	Jew Yor	k 11980		EL.	F	t. above sea	
LOCATION C	F WELL		i0, iaj	Jilalik, i		K 11500		<u> </u>			_
middle lane	ehwy S	Sag Harbor								ft.	
Depth of Well	l Below Surface 180		Depth	to Groundv 151	vater From S	Surface			TOP O	F WELL	
	100	CASING		101				ΙT			
Diameter	o : 1	• 1			. 1			1			
Length	2 in.	in.			in.		in.				
	0 ft.	ft.			ft.		ft.				
SEALING				OPENING	S						
		SCREEN									
Make		OUNCER		OPENIN	GS						
Johnson Diameter					10						
	2 in.	in.		i	n.		in.		170		0-180' Medium
Length	-	I					!				sand with
	5 ft. OP FROM TOP C	ft.		f	t.		ft.				fine sand
17											accompan
		PUMP TE	ST								ied by
DATE				TEST OR	PERMANEI	NT PUMP					small rocks
DURATION C	DF TEST			MAXIMUN	DISCHAR	GE		180			TUCKS
	days	2T	hours			gallons	s per min.				
STATIC LEVE	EL PRIOR TÓ TE: ft.	51	in.		ft.		in.				
MAXIMUM DI				Approx. tir		level after of p					
			ft.			hours	min.				
TYPE		PUMPING INSTALLE	D		MODI	EL NUMBER					
		MARE									
MOTIVE POV	VER	MAKE			H.P.						
Consoitu											
Capacity		a.p.m	against			ft. of discharg	e head			s	
NUMBER OF	BOWLS OR STA	•				in or alconary				c S	
						ft. of t	otal head		¥	<u>r</u>	
									┍┷┷┥	<u>e</u>	
	DROP LINE				SUCI	ION LINE			5	<u>e</u> n	
DIAMETER					IAMETER			1	-		
Length				in.	ength		in.				
Longui				ft.	ongui		in.			s u	
METHOD OF		_			SE OF WAT	ER		1		m	
rotary WORK STAR	Cable to	ol other	-		uger OMPLETED)				р	
10/4/201	7		10/	/4/2017					5		
DATE	DRILLER	Desile				REGISTRATI	ON NO.				
10/4/201	/ F	. Basile				1834					
*NOTE: Show	v log of well mater	ials encountered with d	epth belov	v ground su	rface water	bearing beds		*	•		
	-	screen pump additiona				of interest.					
Describe repa	air job. See instruc	tions as to Well Driller	s Regulati	on and Rep	orts.						

	NEW YORK DEPARTMENT	F OF ENVIRON	NMENTAL CONSERVATIO		40.97267		
County Suffolk	SLOS-2		20170122	Longitude Well Number		2	
	LETION REPOR	T-LONG					_
OWNER	_				L	OG	7
Suffolk C	County Department	of Health	Services		Ground Surfa	ace	
360 Yap	hank Ave; Suite 1C;	; Yaphank	, New York 11980		EL. F	Ft. above sea	
LOCATION OF WELL							-
middle lane hwy Depth of Well Below Surface	Sag Harbor	Depth to Grou	Indwater From Surface		TOP (OF WELL	-
180		150.29					
Diamatar	CASING						
Diameter 2 in.	in.		in.	in.			
Length							
170 ft. SEALING	ft.	OPENI	ft.	ft.			
Make	SCREEN		NINGS				
Johnson			10				
Diameter			:-	:]	170		
2 in.	in.		in.	in.			
5 ft.	ft.		ft.	ft.			
DEPTH TO TOP FROM TOF 170	OF CASING						
	PUMP TEST						0-180'
DATE		TEST	OR PERMANENT PUMP				medium
DURATION OF TEST		MAXIM	IUM DISCHARGE		180		light
days STATIC LEVEL PRIOR TO T		hours	gallo L DURING MAXIMUM PUN	ons per min.			brown sand
ft.	. 201	in.		in.			Sanu
MAXIMUM DRAWDOWN			time of return level after o				
	PUMPING INSTALLED	ft.	hours	min.	-		
ТҮРЕ	MAKE		MODEL NUMBER	२			
MOTIVE POWER	MAKE		H.P.				
Capacity							
	g.p.m.aga	ainst	ft. of discha	arge head		s	
NUMBER OF BOWLS OR S	TAGES		ft c	of total head		C r	
		I				e	
					5] <u></u>	
DROP LINE DIAMETER			SUCTION LINE DIAMETER		$\mathbf{I} \mid \Box$	' <u>n</u>	
		in.		in.			
Length		"	Length	in		s	
METHOD OF DRILLING		ft.	USE OF WATER	in.	1 T	u m	
rotary Cable	e tool other		Auger		┨ │ │	p	
10/12/2017		10/12/2017			5		
DATE DRILLER			REGISTRA				
10/12/2017	F. Basile		183	34			1
*NOTE: Show log of well ma	terials encountered with depth	n below ground	surface water bearing bed	S	<u> ▼ ▼</u>	┼──┤	
and water levels in each casi	ing screen pump additional pu	umping test and	d other matters of interest.				1
Describe repair job. See inst	ructions as to Well Driller's Re	egulation and F	Reports.				1

		NEW YORK DEPARTM	IENT OF EN	IVIRONMENT/	AL CONSERVATION		40.972		
County	Suffolk	SLOS-3	3	2017	70123	Longitude Well Number		09 70123	
		ETION REPO					2017	0120	
OWNER							1	LOG	
	Suffolk C	ounty Departme	ent of He	alth Servi	ces		Ground	Surface	
ADDRESS	360 Yapł	nank Ave; Suite	1C; Yapl	hank, Nev	v York 11980)	EL.	Ft. above s	ea
	OF WELL								
middle lan	e hwy Il Below Surface	Sag Harbor	Denth t	o Groundwater	From Surface		— т(OP OF WELL	
Deptil of We	180			54.29	Tiom Sunace				
		CASING							
Diameter	2 in.	in.		in.		in.			
Length	2 111.								
	'0 ft.	ft.		ft.		ft.			
SEALING			1	OPENINGS					
		SCREEN	1						
Make				OPENINGS	10				
Johnson Diameter					10				0-180'
	2 in.	in.		in.		in.		170	medium light
Length	5 ft.	ft.		ft.		ft.			brown
DEPTH TO 1	TOP FROM TOP			n.		11.			sand
17	0								
DATE		PUMP T			MANENT PUMP				
DATE									
DURATION	OF TEST			MAXIMUM DIS			180		
STATIC LEV	days EL PRIOR TO T	FST	hours		gal IG MAXIMUM PUI	lons per min. MPING			
00	ft.		in.		ft.	in.			
MAXIMUM D	RAWDOWN			Approx. time of	return level after	of pumping			
		PUMPING INSTALLE	ft.		hours	min.			
TYPE		MAKE			MODEL NUMBE	R			
MOTIVE PO	WER	MAKE			H.P.				
Capacity									
			n.against		ft. of disch	arge head		s	
NUMBER OF	BOWLS OR ST	TAGES	1		<i>t</i> +	of total head		C C	
					11.	or total nead		e r	
							5		
DIAMETER	DROP LINE			DIAM	SUCTION LINE			/	
				in.		in.			
Length				Lengt	١			▼ s	
				ft.	OF WATER	in.		↑ u	
rotary		tool other		Auge				m	
WORK STAP	RTED			COMF	PLETED			p	
10/12/201 DATE	7 DRILLER		10/12	2/2017	PECISTP	ATION NO.	. 5	5	
10/12/201		F. Basile			18			\top	
								↓	
	-	erials encountered with		-	-				
		ng screen pump additior uctions as to Well Drille			natters of interest.				
Describe rep			- rogulation	i ana i toponto.			I		

		NEW YORK DEPART	MENT OF ENVIRO	ONMENTAL	CONSERVATION		40.9	7243			
County	Suffolk	SLOS-	4	20170)124	Longitude Well Number		342 0170124	1		
		ETION REPO									•
OWNER								L	JG		
ADDRESS	Suffolk C	ounty Departme	ent of Health	Service	es		Grou	nd Surfa	ace		
ADDRE33	360 Yapl	nank Ave; Suite	1C: Yaphar	k. New	York 11980		EL.	F	t. above	sea	
LOCATION C	DF WELL							<u> </u>			
middle lane		Sag Harbor							f DF WELL	t.	
Depth of Well	I Below Surface 175			oundwater F 42	From Surface					-	
	170	CASING		٦ ८							
Diameter	2 in.	in.		أمنا		in					
Length	Z IN.	In.		in.		in.					
	5 ft.	ft.		ft.		ft.					
SEALING			OPEI	NINGS							
		SCREEN	I								
Make			OP	ENINGS							0-175' Medium
Johnson Diameter			I		10		- I				sand with fine sand
	2 in.	in.		in.		in.		165			accompanied
Length	- 4	4		<i>u</i>		<i>u</i>					by small rocks
	5 ft. OP FROM TOP	ft.		ft.		ft.					
16	5										
DATE		PUMP T			IANENT PUMP						
DATE											
DURATION C	DF TEST		MAX	IMUM DISC			175				
STATIC LEVE	days EL PRIOR TO T	FST	hours		gallor MAXIMUM PUMF	ns per min. PING					
	ft.	201	in.		t.	in.					
MAXIMUM DI	RAWDOWN			ox. time of r	eturn level after of	pumping					
		PUMPING INSTALL	ft.		hours	min.					
TYPE		MAKE			MODEL NUMBER						
MOTIVE POV	NER	MAKE			H.P.						
Capacity											
		g.p.	m.against		ft. of dischar	ge head			s		
NUMBER OF	BOWLS OR ST	TAGES	I						c		
			I		ft. of	total head		¥	r e		
								5	e		
	DROP LINE				SUCTION LINE			<u> </u>	n		
DIAMETER			in.	DIAMET	IER	in.					
Length				Length				¥	s		
			ft.			in.		A	u		
METHOD OF		tool othe	۶r	Auger	WATER				m		
WORK STAR				COMPL	ETED				р		
10/4/201			10/4/201	17	REGISTRA			5			
DATE 10/4/201 ⁻	DRILLER 7	F. Basile			1834			Τ			
							↓ ↓	↓			
	-	erials encountered with			-		Ĩ				
		ng screen pump additio uctions as to Well Drille			atters of interest.		1				
- coonoc rope							1				

I	NEW YORK DEPARTM	IENT OF E	NVIRONMENT	AL CONSERVATION		40.9			
County Suffolk	SLOS-5	5	201	70125	Longitude Well Number		170125		
	ETION REPO						110120		_
OWNER						I	LO	G	
	ounty Departme	nt of He	ealth Servi	ices		Grour	d Surfac	e	
ADDRESS 360 Yaph	ank Ave; Suite	1C [.] Yar	hank Nev	w York 11980		EL.	Ft	. above sea	
LOCATION OF WELL		10, 10p				<u> </u>			
	Sag Harbor							ft.	
Depth of Well Below Surface 180			to Groundwate 142.85	er From Surface			TOP OF	WELL	
100	CASING		142.00						
Diameter	in		:		ind				
2 in.	in.		in.		in.				
170 ft.	ft.		ft.		ft.				
SEALING			OPENINGS						
	SCREEN								
Make			OPENINGS	10					
Johnson Diameter				10				- -	
2 in.	in.		in.		in.	_ L	170		0-180' medium
Length 5 ft.	ft.		ft.		ft.				light
DEPTH TO TOP FROM TOP (n.				brown
170									sand
DATE	PUMP TE	:51	TEST OR PE	RMANENT PUMP					
							_		
DURATION OF TEST			MAXIMUM DI			180			
days STATIC LEVEL PRIOR TO TE	ST	hours	LEVEL DURI	galion NG MAXIMUM PUMP	is per min. ING				
ft.		in.		ft.	in.				
MAXIMUM DRAWDOWN		f4	Approx. time of	of return level after of p					
	PUMPING INSTALLE	ft. D		hours	min.				
TYPE	MAKE			MODEL NUMBER					
MOTIVE POWER	MAKE			H.P.					
	MARE								
Capacity		1		•					
NUMBER OF BOWLS OR ST		n.against		ft. of discharg	ge head			s	
	1020			ft. of	total head		↓	c r	
								e	
DROP LINE				SUCTION LINE			5 +	_e	
DIAMETER			DIAN	IETER				<u>n</u>	
			in.		in.				
Length			ft.	th	in.			S	
METHOD OF DRILLING				OF WATER			TI	u m	
cable to	ool other		Aug					p	
WORK STARTED 10/10/2017		10/1	сом 0/2017	PLETED			5		
DATE DRILLER		10,1	0,2011	REGISTRAT			띡ㅣ		
10/10/2017	F. Basile			1834	Ļ				
*NOTE: Show log of well mate	rials encountered with a	lepth below	ground surfac	e water bearing beds	•	┨ ♥	◆		
and water levels in each casing			-	-					
Describe repair job. See instru									

Latitude N40.974541 Longitude W072.338505 Well Number S-135137

County	Suffolk	SLOS-6	6	2	20170126	Well Numb	er <u>S-1351</u>	37		_
	COMPL	ETION REPC	RT-L	ONG IS		ELL				_
OWNER								LOG		7
	Suffolk Co	ounty Departme	nt of H	ealth Serv	vices		Ground	Surface		
ADDRESS	260 Vanh	onk Avo: Suito		shank Nr	w Vork 11	000		-		
LOCATION		ank Ave; Suite	IC, rap	Shank, ine	W TOIK II	960	EL	+t. a	bove sea	_
		BRIDGEHAMP ⁻	ΓΟΝ				_		ft.	
	ell Below Surface			to Groundwa	ter From Surface	e				
	180'		137.	02"			_ ↑			
Diameter		CASING					_			
2"	in.	in.		i	in.	in.		170'		0-180'
Length								l		Medium
	70 ft.	ft.			ft.	ft.				light
SEALING				OPENINGS						brown
		SCREEN					_			sand.
Make		GOREER		OPENING	S					Scattered
Johnson				1	0 SLOT					coarse
Diameter	·. 1				. 1	• 1				gravel and cobble
2" Length	in.	in.		ll	n.	in.	_			170-180'
5"	ft.	ft.		f	t.	ft.				110 100
	TOP FROM TOP									
170'										
DATE		PUMP TE	ST		ERMANENT PU	MP	_			
DATE										
DURATION	OF TEST				DISCHARGE		180'	1		
	days	0.7	hours			gallons per min.		1 1		
STATICLE	VEL PRIOR TO TE ft.	SI	in.	LEVEL DUF	RING MAXIMUM	PUMPING in.				
MAXIMUM	DRAWDOWN			Approx, time	of return level a		_			
			ft.		ho					
		PUMPING INSTALLE								
TYPE		MAKE			MODEL N	UMBER				
							_			
MOTIVE PC	JWER	MAKE			H.P.					
Capacity							_			
		g.p.n	n.against		ft. o	f discharge head			s	
NUMBER O	OF BOWLS OR ST	AGES	1						с	
						ft. of total head	_	♥	r	
									<u>e</u>	
	DROP LINE				SUCTION		_ !	о II—	e n	
DIAMETER				D	IAMETER				<u></u>	
				in.		ir				
Length					ength			¥	s	
	OF DRILLING			ft.	SE OF WATER	ir			u	
	DRILLING				SE OF WATER				m	
Auger WORK STA	ARTED			C	OMPLETED		_		р	
10/10/20	17		10	/10/2017				5'		
DATE	DRILLER				RE	GISTRATION NO.		-		
10/10/20	17	LUIS VELASQUE	2			1954				
*NOTE: She	w log of well mate	rials encountered with o	enth below	v around surfa	ace water bearing	n beds	-↓ ◆	▼		
	-	g screen pump addition		-		-				
		ctions as to Well Driller				-			1	

		NEW YORK DEPAI	RTMENT OF E	NVIRON	MENTA	AL CONSERVATION			97455		
County	Suffolk	SLO	S-7		2017	70127	Longitude Well Number		.3393 017012	27	
				ONG		AND WELL					-
OWNER									L	.OG	٦
ADDRESS	Suffolk C	ounty Departr	ment of He	ealth S	ervio	ces		Gro	und Sur	face	
	360 Yaph	nank Ave; Suit	e 1C: Yan	bhank,	New	v York 11980		EL.		Ft. above sea	
LOCATION C	OF WELL			, ,	-						-
middle lan		Sag Harbor				<u> </u>				ft.	4
Depth of Wel	Il Below Surface 175		Depth	142.85	dwater	From Surface				OF WELL	
		CASI	IG	112.00							
Diameter	2 in.	in.			in.		in.				0 -30' dark browr soild w/medium
Length	2 111.	111.			m.		III.				brown sand
	65 ft.	ft.		-	ft.		ft.				
SEALING				OPENIN	IGS						
		SCREE	N	I							
Make				OPENI	NGS						
Johnson Diameter				I		10					30-175' medium brown sand and
	2 in.	in.			in.		in.		165		gravel
Length	- 4	<i>t</i> 1			<i>u</i>		<i>u</i>				
DEPTH ТО Т	5 ft.	ft. OF CASING			ft.		ft.				
16	65										
DATE		PUM	PTEST	ITEST O		MANENT PUMP					
DATE											
DURATION (OF TEST				JM DIS	CHARGE		175	5		
STATIC LEV	days EL PRIOR TO T	EST	hours		DURIN	gallon: IG MAXIMUM PUMPI	s per min. NG				
• • • • • • • • • • • • • • • • • • • •	ft.		in.		2011	ft.	in.				
MAXIMUM D	RAWDOWN			Approx.	time of	return level after of p					
		PUMPING INSTA	ft.			hours	min.				
TYPE		MAKE				MODEL NUMBER					
MOTIVE POV	WER	MAKE				H.P.					
Capacity											
			.p.m.against			ft. of discharg	e head			s	
NUMBER OF	BOWLS OR ST	AGES	1			ft of t	otal head			C	
						11. 01 1	olai neau			e	
									5]	
DIAMETER	DROP LINE				DIAME	SUCTION LINE				l n	
DIAMETER				in.	Di/ Wil		in.				
Length					Length	ו			. ↓	s	
METHOD OF				ft.		DF WATER	in.			u	
rotary		tool 🗖 o	ther		Auge	r				m p	
WORK STAF	RTED				COMF	PLETED		1			
10/11/201 DATE	7 DRILLER		10/1	1/2017		REGISTRAT			5		
10/11/201		F. Basile				1834					
								Ł↓	\		
	-	erials encountered w ng screen pump add		-		e water bearing beds					
		uctions as to Well Di		-				1			
K	-		v								

NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION Latitude N40.974027 Longitude W072.341900

.....

County		SLC				Well Number	S-135136		_
OWNER								LOG	1
ADDRESS	SUTTOIK C	ounty Depart	ment of H	ealth Servic	ces		Ground Su	Irface	
	360 Yaph	ank Ave; Sui	te 1C; Ya	phank, New	/ York 119	80	EL	Ft. above sea	
		BRIDGEHAN							-
	Below Surface	DRIDGENAN		n to Groundwater	From Surface			ft.	-
	180'		139.						
Diameter		CASI	NG						
2"	in.	in.		in.		in.	170)'	0-85'
Length		~			1	<u> </u>	┨╽└──┬		brown
170 SEALING	0 ft.	ft.		ft.		ft.			sand
OE/(EIIVO									mixed
Mala		SCREE	N						with silt
^{Make} Johnson				OPENINGS	SLOT				and gravel
Diameter				1 10					
2"	in.	in.		in.		in.			
Length		I							
5"	ft.	ft.		ft.		ft.			85'-110'
DEPTH TO T	OP FROM TOP	OF CASING							brownish
170'									gray silt with some
DATE		PUM	P TEST	TEST OR PERI		D	4		silt and
DATE									gravel
DURATION C	OF TEST			MAXIMUM DIS	CHARGE		180'		J
STATIC LEVE	days EL PRIOR TO TE	EST	hours		IG MAXIMUM F	gallons per min. PUMPING			
	ft.		in.		ft.	in.			
MAXIMUM DI	RAWDOWN			Approx. time of					110'-180'
		PUMPING INSTA	ft.		houi	rs min.			brown
TYPE		MAKE			MODEL NU	MBER			sand
									mixed
MOTIVE POV	VER	MAKE			H.P.				with silt
Capacity								s	and gravel
			g.p.m.against		ft. of	discharge head		С	
NUMBER OF	BOWLS OR ST	AGES	1	1				e r	
						ft. of total head	📍	e	
							5"	- n	
	DROP LINE			DIA		INE			
DIAMETER				in.	METER	in.		s	
Length				Leng	gth		1 ↓	u	
				ft.		in.	🛉	m	
METHOD OF	DRILLING			USE	OF WATER			р	
Auger WORK STAR	TED				IPLETED				
10/11/2017	7		10)/11/2017			5'		
DATE 10/11/2017	DRILLER 7	LUIS VELASQ	UEZ		REGI	ISTRATION NO. 1954		-	
10, 11/201			<u> </u>						
	•	erials encountered v	•	•	•				
		ig screen pump add		-	natters of intere	est.			
Describe repa	air job. See instru	uctions as to Well D	riller's Regulati	on and Reports.					

	١	NEW YORK DEPARTM	IENT OF EI	NVIRON	MENTAL CO	NSERVATION		40.9	7403		
County	Suffolk	SLOS-9	9		2017012	9	Longitude Well Number		3419 170129	9	
		ETION REPC		ONG						-	
OWNER								Ĩ	LC	JG	
	Suffolk Co	ounty Departme	nt of He	ealth S	Services			Grour	nd Surfa	ace	
ADDRESS	360 Yanh	ank Ave; Suite	1C: Var	hank	New Yo	ork 11980		EL.	F	t. above sea	
LOCATION O	F WELL	ank Ave, Oulle	<u>то, тар</u>	mank,		JIK 11300		<u> </u>			L
middle lane		Sag Harbor								ft.	
Depth of Well	Below Surface 180			to Grour 149.62	ndwater Fror	n Surface			TOP C	DF WELL	
	180	CASING		149.02				1 1			
Diameter		. 1			• 1		• 1				Dark brown clay and silt
Length	2 in.	in.			in.		in.				0-20'
	Oft.	ft.			ft.		ft.				
SEALING				OPENI	NGS						
		SCREEN						-			
Make		CONCERN		OPEN				-			
Johnson Diameter					1	0					
	2 in.	in.			in.		in.		170		Medium
Length					!						brown sand
	5 ft. OP FROM TOP C	ft.		T	ft.		ft.				w/ silt and
17(gravel 20'-
DATE		PUMP TE	ST	TEATA							180'
DATE				1510	R PERMAN						
DURATION C	DF TEST			MAXIM	UM DISCHA	RGE		180			
STATIC LEVE	days	ST	hours	LEVEL		gallor AXIMUM PUMP	ns per min.				
	ft.	51	in.		ft.		in.				
MAXIMUM DF	RAWDOWN			Approx.	time of retur	n level after of p	oumping				
		PUMPING INSTALLE	ft.			hours	min.				
TYPE			U		MO	DEL NUMBER					
MOTIVE POV	VER	MAKE			H.P						
Capacity											
			n.against			ft. of dischar	ge head			s	
NUMBER OF	BOWLS OR STA	GES	1			<i>t t</i>				c	
						It. Of I	total head		Y	e r	
									5		
DIAMETER	DROP LINE				SU DIAMETER	CTION LINE			Щ	<u>n</u>	
DIAWETER				in.			in.			<u> </u>	
Length					Length				↓ '	s	
METHOD OF				ft.	USE OF W	ATED	in.			u	
rotary		ool			Auger	AIER				m	
WORK STAR	TED				COMPLET	ED				p	
10/12/2017 DATE	7 Driller		10/1	2/2017		REGISTRAT			5		
10/12/2017		Basile				1834			\top		
								L↓	↓		
	-	ials encountered with o screen pump addition		-		-		·			
		ctions as to Well Driller									
	-	-						at			

		NEW YORK DEPARTME	ENT OF E	NVIRONM	ENTAL	CONSERVATION	Latitude Longitude	N40						
County	Suffolk	SLOS-1	0		2017	0130	Well Number			0905				
	COMPL	_ETION REPO	RT-LC	DNG I	SLA	ND WELL								
OWNER										_OG				
ADDRESS	Suffolk County Department of Health Services									Ground Surface				
	360 Yap	hank Ave; Suite 1	C; Yap	hank,	New `	York 11980		EL.		Ft. above s	sea			
	LAND PROI			to Groupe	lwater F	rom Surface				ft	t.			
Deptil of Wei	195'		151.0		materi			•	•		-			
Diamatan		CASING												
Diameter 2''	in.	in.			in.		in.		185	·				
Length	!													
18 SEALING	5 ft.	ft.		OPENIN	ft.		ft.							
SLALING					50									
		SCREEN												
_{Make} Johnson				OPENI	NGS 10 SI	ОТ								
Diameter	. 1	I												
2" Length	in.	in.			in.		in.							
5''	ft.	ft.			ft.		ft.							
	OP FROM TOP	P OF CASING			<u></u>		!							
185'		PUMP TE	ST											
DATE			51	TEST OR	PERMA	ANENT PUMP								
DURATION (MAXIMU										
DURATION	days		hours	IVIAAIIVIU			ns per min.	195	<u> </u>		0-19			
STATIC LEV	EL PRIOR TO T	EST		LEVEL			NG				med			
MAXIMUM D	ft.		in.	Approx ti		ft. turn level after of pu	in.				light brov			
	NAW DOWN		ft.			hours	min.				san			
)			I								
TYPE		MAKE				MODEL NUMBER								
MOTIVE PO	WER	MAKE				H.P.								
Capacity		anm	against			ft. of discha	rae head							
NUMBER OF	BOWLS OR S		against [ige nead			S C				
						ft. of	total head		¥	r				
	DROP LINE					SUCTION LINE			5"	∫ <mark>⊢e</mark> _ n				
DIAMETER					DIAME	TER								
Length				in.	Length	1	in.							
Longui				ft.	Longu		in.		Ā	s u				
METHOD OF	DRILLING				USE C	OF WATER				m				
Auger WORK STAF						LETED				р				
10/13/201			10/	/13/2017					5'	ן ון				
DATE	DRILLER					REGISTRA			Ľ					
10/13/201	7	LUIS VELASQUEZ	•			195	4							
*NOTE: Show	w log of well mat	terials encountered with de	epth below	ground s	urface w	ater bearing beds		▼	•					
	-	ing screen pump additiona		-		-								
Describe repa	air job. See insti	ructions as to Well Driller's	Regulation	on and Rep	oorts.									